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Abstract—Because of the naturalness of software and the
rapid evolution of Machine Learning (ML) techniques, frequently
repeated code change patterns (CPATs) occur often. They range
from simple API migrations to changes involving several complex
control structures such as for loops. While manually performing
CPATs is tedious, the current state-of-the-art techniques for
inferring transformation rules are not advanced enough to handle
unseen variants of complex CPATs, resulting in a low recall
rate. In this paper we present a novel, automated workflow
that mines CPATs, infers the transformation rules, and then
transplants them automatically to new target sites. We designed,
implemented, evaluated and released this in a tool, PYEVOLVE.
At its core is a novel data-flow, control-flow aware transformation
rule inference engine. Our technique allows us to advance the
state-of-the-art for transformation-by-example tools; without it,
70% of the code changes that PYEVOLVE transforms would not
be possible to automate. Our thorough empirical evaluation of
over 40,000 transformations shows 97% precision and 94% recall.
By accepting 90% of CPATs generated by PYEVOLVE in famous
open-source projects, developers confirmed its changes are useful.

I. INTRODUCTION

The naturalness of software [24], [25], [29], [34] leads
to repeated code changes, both within and across projects.
Because programmers employ the same coding idioms [26],
[28] and best practices (e.g., linting [83]), they change code
similarly, resulting in repeated code changes. These repeated
changes are fine-grained, recurring at the method level, and
have the same semantics.

Listing 1 shows an example of such a change in project
NifTK/NiftyNet, an open-source convolutional neural network
platform. The developers replaced a for loop that sums the
list elements with numpy.sum, which is a best practice for
improving performance. This change involves programming
idioms [27], [28] and occurs within a specific method. As it
is repeated at multiple locations in multiple commits, we call
this a code change pattern (CPAT).

Listing 1: Commit c8b28432 in GitHub repository
NifTK/NiftyNet: Replace for loop with NumPy sum

1 -result = 0
2 -for elem in elements:
3 - result = elem + result
4 +result = numpy.sum(elements)

Writing program transformations to automate a huge variety
of such changes (e.g., more than 28,000 kinds as shown
in [21]) is difficult, as evidenced by research [64]–[82]. There

are many reasons. (i) AST rewriting poses a significant barrier
to entry, (ii) Matching control/data flows for real code is
tedious to develop since there is too much noise and syntactic
variance to account for, (iii) Moreover, as these best practices
evolve, they are difficult to maintain, thus it requires a com-
munity effort. To overcome these challenges, in this paper we
rely on a unique insight: if we mine the many examples of
CPATs in the open-source community and infer transformation
rules, we can feed them to automated program transformation
systems, with no burden on the developer. Thus, we present an
end-to-end solution, PYEVOLVE, which mines CPATs from the
open-source community, it automatically infers the transforma-
tion rules in a data- and control-flow manner, and transplants
and applies them at new target sites. We show its effectiveness
by applying it on Python ML projects.

According to the GitHub 2021 annual report [42] of pro-
gramming language usage, Python is one of the top two most
used. Moreover, it has become the lingua-franca for machine
learning (ML) and data science development [8]–[12]. Despite
its prominence and community needs, tools for evolving
Python code are significantly behind other languages [10].

To improve the tools available for Python, researchers
recently developed tools to mine CPATs in software systems.
R-CPATMINER [21], [22] is one such tool that we devel-
oped for mining CPATs in Python systems. In that previous
work [21], we further conducted a large-scale empirical study
on CPATs in 1,000 Python ML systems and found that the
complexity of CPATs in ML systems ranged from basic API
migrations to changes involving complex control structures
like for loops. Developers perform CPATs for several reasons:
performance (e.g., for loop → vectorization), using advanced
language features (e.g., for loop → list comprehension), better
resource management (e.g., using with statement), and library
migrations (e.g., numpy.mean() → torch.mean()). Manually
searching and applying variations of such changes to several
locations is error-prone. Moreover, developers might overlook
sites that require the same edit. Indeed, over 75% of the
respondents of a survey [21] with 97 developers indicated they
needed these CPATs to be automated. However, the existing
CPAT automation tools are not yet able to handle them.

Despite the existence of many program transformation sys-
tems [64]–[82], their main impediment to adoption is the need
for programmers to write sophisticated program transforma-



tion rules. In recent years, we have seen an emerging trend
of tools and techniques that infer transformation rules using
example code edits [1], [15]–[19], [33], [48]–[52], [54], [86],
[87]. These techniques infer transformation rules from before
and after edits of human-adaptations, then use the inferred
rules to transform target codes. This is called “Transformation
by Example”. Despite the potential of such techniques to sig-
nificantly ease code evolution, they have so far been primarily
used for API migrations, such as replacing obsolete API calls
with modern ones from the Android SDK [1], [5], [15], [17],
[19], [54], the Linux kernel [40], [41], and Type migration
of Java systems [33]. Although existing techniques work well
when replacing an API call with another, they under-perform
on more complex coding idioms such as the one in Listing 1.
In diverse codebases, this CPAT will have many variations in
terms of data- and control-flow.

Listing 2: The repository hachmannlab/chemm uses a for loop
to compute the sum of an array

1 n_diff = 0
2 to_eval = getEvalArray()
3 for dif in to_eval.getDiff():
4 total = n_diff + dif
5 n_diff = total

For example, Listing 2 is semantically equivalent to List-
ing 1 but differs in data- and control-flow due to assign-
ments and how the accumulator variable computes the sum.
Therefore, existing “Transformation by Example” techniques
struggle because the rule they inferred for Listing 1 cannot
be used to transform the target code in Listing 2, resulting in
a low recall rate. Because existing techniques are so syntax-
centric, the transformation rules are prone to overfitting to the
input examples. That is, the transformation rule may work
well on the given examples but may be unable or erroneously
transform unseen data- or control flow variants outside of
the examples. This demonstrates a major limitation of current
transformation rule inference methodologies.

To overcome these challenges, in this paper we present
a novel data- and control-flow aware technique that infers
transformation rules and adapts them to transform even unseen
variations in the target codes. Our novel technique enables
automating even unseen variations of the CPAT by preserving
data- and control-flow relations. In this paper, we present a
fully end-to-end pipeline that mines and automates Python
CPATs. Our pipeline consists of four major steps: (i) mine
CPATs from version histories, (ii) infer transformation rules,
(iii) identify the new sites to apply the CPATs, (iv) adapt
the transformation rules to the new sites. To do so, we
leverage and further extend four state-of-the-art techniques:
(i) to mine CPATs we use R-CPATMiner [21], [22], (ii) to
infer initial transformation rules from example instances in
CPATs we use InferRule [33] (iii) to identify new sites to
apply CPATs we use fine-grained program dependence graphs
fgPDG [34]; and (iv) to apply the CPATs at the new sites, even
for unseen variants, we re-infer the transformation rules based
on data- and control-flow relations in the fgPDG. Lastly, we

use ComBy [32] to declaratively rewrite programs according
to the re-inferred transformation rules.

We implemented our novel technique in PYEVOLVE. We
evaluated its effectiveness and usefulness on a corpus of
CPATs that had previously been shown to be diverse in terms
of size, frequency, authors, and projects [21]. We conducted
replication case studies comprising a broad variety of 40,000
transformation trials. Using cross-validation, we tested PY-
EVOLVE’s ability to correctly transform CPATs. We found
that PYEVOLVE achieves 97% precision and 94% recall when
replicating developer-performed changes. In addition, we dis-
covered that 70% of these changes are data or control-flow
variants that cannot be automated using existing techniques,
thus PYEVOLVE advances the state-of-the-art significantly. To
evaluate PYEVOLVE’s usefulness, we submitted pull requests
to highly-rated, best-in-class projects such as TensorFlow, Py-
Torch, Scikit-Image, and Keras, totaling 181 CPAT instances.
At the time of this writing, their developers have already
accepted 163 (90%) CPATs.

This paper makes the following contributions:
(1) We introduce a novel data- and control-flow aware rule
inference that effectively transforms even unseen variants that
cannot be handled by existing rule inference techniques.
(2) We designed and implemented our technique in PY-
EVOLVE. It mines CPATs from projects, infers transformation
rules, and generates patches for Python projects. To the best
of our knowledge, this is the first such pipeline developed
for Python and it assists ML developers and other Python
developers in keeping up with rapidly evolving best practices.
(3) Our empirical evaluation of PYEVOLVE on 40,000 trans-
formations shows that PYEVOLVE is effective (97% precision,
94% recall), needed (it enables automating 70% more CPATs
than existing tools), and its patches are useful (developers
accepted 90% of 181 PYEVOLVE-generated CPATs).
(4) Our tool and evaluation dataset is open-source and avail-
able for others to reuse [44].

II. MOTIVATING EXAMPLES

To illustrate the challenges of using existing “Transfor-
mation by Example” techniques we use the real-world code
changes, shown in Table I. The first column (Code Before→
Code After) shows the code fragments before and after
the code change, while the second column (Rule) presents
the rules encoding the code change using the syntax of
Comby [20], a state-of-the-art code rewrite tool. The third
column shows the Guards for each rule in column-2. The last
column shows examples of new target sites that we would like
to transform. First, we describe a success scenario that existing
techniques automate with a high recall rate, followed by three
scenarios that they struggle to automate (as the complexity of
the code rises), but PYEVOLVE succeeds.

Table I, row 1 depicts an example of a CPAT mined from
TensorFlow. To open a file, the code changes from open, which
is native to Python, to GFile in TensorFlow. This adaptation
is represented by the rewrite rule :[[v1]]=open(:[[v0]]) →
:[[v1]]=tf.gfile.GFile(:[[v0]]). This rule transforms any
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Table I: Motivating Examples

Code Before → Code After Rule Guard New Target Site

1. f=open("f.csv")
:[[v1]]=open(:[[v0]])
→ :[[v1]]=tf.gfile.GFile(:[[v0]])

type:=:[[v1]]->TextIO
type:=:[[v1]]->str

f=open("data.csv")

→
f=tf.gfile.GFile("f.csv")

2. X=numpy.dot(A,B)
Y=numpy.dot(X,C)

:[[v3]]]=:[[v6]]].dot
(:[[v1]],:[[v2]])

:[[v5]]]=:[[v6]]].dot
(:[[v3]],:[[v4]])

type:=:[[v1]]->ndarray
type:=:[[v2]]->ndarray
type:=:[[v3]]->ndarray
type:=:[[v4]]->ndarray

prod = numpy.dot(
numpy.dot(A,B),C)

→
Y=numpy.linalg

.multi_dot([A,B,C])

→
:[[v5]]=:[[v6]]].linalg.multi_dot

([:[[v1]],:[[v2]],:[[v3]]])

type:=:[[v5]]->ndarray
import:=:[[v6]]->numpy

3.

olderr = np.
seterr(divide

='ignore')
try:

actual=logit(a)
finally:

np.seterr(olderr)

:[[l1]]=:[[l3]].seterr(
divide='ignore')

try:
:[l12]

finally:
:[[l3]].seterr(:[[l1]])

import:=:[[l3]] -> numpy

olderr = np.
seterr(divide='ignore')

computeSum([2,4,6])
try:

actual = logit(a)
finally:

np.seterr(olderr)

→
with np.errstate(

divide='ignore'):
actual = logit(a)

→
with :[[l3]].errstate(

divide='ignore'):
:[l12]

4.
res = 0
for elem in elems:

res = res + elem

:[[v0]] = 0
for :[[v1]] in :[v2]:

:[[v0]] = :[[v0]] + :[[v1]]

type:=:[[v0]]->int
type:=:[[v1]]->int

n_diff = 0
to_eval = getEvalArray()
for dif in to_eval.getDiff():

total = n_diff + dif
n_diff = total

→ res = numpy.sum(elems) → :[[v0]]=numpy.sum(:[v2])

target code similar to the before- change shown in column-1-
Table I. The rule has a left side (indicating the “before” the
change) and a right side (indicating the “after” the change)
separated by an arrow. The left side contains Python statements
with template variables (e.g., :[[v0]]) that bind to AST nodes
from the actual source code (e.g., v0 binds to file.csv). The
right side of the rule also contains Python statements with
template variables, where each template variable denotes the
code fragments that will be used after the change is applied.
Because the change in row 1 swaps one API invocation
(open) for another (tf.gfile.GFile), the likelihood of finding
semantically equivalent different variants (in terms of data-
flow or control-flow) in new target sites is very low. Therefore,
the example transformation (in columns 1&2) is sufficient to
represent many variants and would be applicable to many new
target sites. For these API migrations, the existing Program-by-
Example techniques [15], [17]–[19], [33], [48]–[52] perform
well (i.e., they achieve high recall rate).

However, many real-world CPATs involve multiple method
invocations [21]. For example, in Table I row 2 (taken from
Scikit-learn), developers replaced two numpy.dot calls that per-
form matrix multiplication with multi_dot([A,B,C]), making
the code concise and efficient. We show the relevant inferred
rule for this change in column 3-Table I. Now consider another
site within the same Scikit-learn project, shown in column
4. While this new site similarly does matrix multiplication
using two numpy.dot calls, it does so in a data flow variant
by passing the result of the first numpy.dot directly into the
second numpy.dot. The rule in column 3 cannot be used to
transform this new target site, and because this variant was
not seen during rule inference.

Real-world CPATs are large in size and involve many

control structures [21]. For example, as shown in row 3, in the
project SciPy, developers transform error-ignoring code that
uses try finally to a with statement. The new target site in
column-4, on the other hand, has an extra method invocation,
making it a control-flow variant. Now let us consider the
example in row 4, which also appeared in Section I. The target
site in column-4 has an additional assignment statement and
variable assignment, which makes it both data- and control-
flow variant. Since these variants were not seen as change
exemplars during rule inference, existing “Transformation by
Example” techniques fail to change these new target sites, but
PYEVOLVE changes them correctly.

We observed many cases where existing techniques inferred
rules that are prone to over-fitting the examples and are
unable to account for even minor variants. These variants are
frequently employed in ML code bases that perform advanced
numerical computations. Perhaps these variants make it easier
to debug. For example, even though the code in Listing 2
uses a redundant variable total (lines 4 and 5 can be easily
combined n_diff=n_diff+ dif), a developer can still use the
variable total by inserting a debug point in Line 4 to test
the addition of two consecutive array elements. Despite the
abundance of such variants, existing “Transformation by Ex-
ample” techniques fail to automate new target sites that are
semantically-equivalent but syntactically-different, thus they
fail to transform good candidates. PYEVOLVE provides an
end-to-end solution for mining and automating code transfor-
mations in a data- and control-flow aware manner, therefore
automating even previously unseen variants of changes.

III. TECHNIQUE

PYEVOLVE is our novel technique for inferring CPATs from
other code bases and adapting and applying them to new
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Phase 1:Mine CPATs Phase 2:Infer transformation rules Phase 3:Identify potential sites Phase 4: Apply CPAT

CPAT

Figure 1: The high-level overview of the pipeline for mining and applying a CPAT

target sites. Figure 1 provides the high-level overview of our
technique, which consists of four major phases:
Phase 1. PYEVOLVE mines CPATs from the version history
of Python projects. To do so, we use R-CPATMiner [21], the
state-of-the-art CPAT mining tool for Python systems.
Phase 2. PYEVOLVE infers transformation rules from the
previously mined CPATs. To do so, we adapted InferRule [33],
which is a state-of-the-art tool for inferring transformation
rules in Java (that we adapted to Python).
Phase 3. PYEVOLVE identifies target sites in the code where
previously mined CPATs can be applied. To do so, we use a
graph-based matching technique (described in Section III-B3).
Phase 4. PYEVOLVE adapts the rules inferred in Phase2 to
the target sites and their contexts (see Section III-B4). This
allows it to be effective for a wider range of unseen CPAT
variants. These adapted rules take into account the data-and
control-flow relations. Finally, it applies them to the target
sites observed in Phase3.

The key idea of making PYEVOLVE resilient to both seen
and unseen variants relies on a graph-based matching tech-
nique that involves two main steps: (i) We first build graphs
for the target code and initial transformation rule, then mine
isomorphic sub-graphs to those of the rule in the target code.
This makes it possible to identify potential sites for CPATs,
taking into account both seen and unseen data-and control flow
variants (Section III-B3). Then (ii) using the sub-graphs, we
adapt the transformation rules to the target site and its context.
This makes it possible to create rules that take into account
the target code’s data-and-control flow (Section III-B4).

The rest of this section is organized as: (i) Section III-A
defines fundamental terms used throughout the paper, (ii) Sec-
tion III-B1 describes how we mine CPATs, (iii) Section III-B2
describes our graph representation for the rule and target code,
and (iv) Section III-B3 describes how to mine potential sites to
apply CPAT by mining sub-graphs, finally (v) Section III-B4
how to infer the final transformation rule.

A. Basic Concepts

We now formally define the fundamental terms.

Definition III.1 (TEMPLATE EXPRESSION: T). This is a
generic and lightweight way of searching and matching syntac-
tic structures in the AST of a function. In Python, a template
expression is made up of expressions and statements, as well
as template variables (or holes) that match to a program AST.

Our template expressions adhere to the COMBY syntax [32]
- a state-of-the-art, lightweight multi-language syntax trans-
formation technique for declaratively rewriting syntax. Rules

TRANSFORMATIONRULE ::= GUARD RULE
RULE ::= TEMPLATEEXPRESSION→ TEMPLATEEXPRESSION
GUARD ::= PRED | PRED GUARD | ∅
PRED ::= ISKIND(TEMPLATEVARIABLE, KIND) |
. ISTYPE(TEMPLATEVARIABLE , TYPE) |
. ISEQUAL(TEMPLATEVARIABLE, VALUE) | NOT(PRED)

Figure 2: DSL for program transformation rule

written in the COMBY language are human readable and mod-
ifiable by developers, who can further customize the changes.
Thus, they will appeal to developers who might not like
hard-coded refactoring tools that automate code changes [45],
[84] without any intervention from the developer. Details of
COMBY’s syntax can be found on its website [20].

Definition III.2 (TEMPLATE VARIABLE: V). This corre-
sponds to one or more program elements and is also known
as Holes [5] in the “Transformation by Example” domain.
According to COMBY [20], :[n] binds the source code to
a template variable n. A template variable can match all
characters lazily up to its suffix (like .*? in regex) within
its level of balanced delimiters. COMBY supports mainly two
template variables: (i) :[[v]] matches an identifier, analogous
to \w+ in regex; we denote it as (VI), (ii) :[v] matches one or
more alphanumeric characters and "_". We denote it as (VA).

Definition III.3 (RULE: R(TLHS → TRHS)). This defines how
to transform the input AST to an output AST using template
expressions. In our setting, template expression (TRHS) on the
right side of the Rule contains template variable (V) that
denote the substitution with an appropriate fragment of the
program AST, as matched on the left side. For example, once
the rule in row 4-Table I is applied to the code that sums the
elements in Listing 1, it will be rewritten as np.sum(elements).

1) Transformation Rules (TR): Modern “Transformation
by Example” techniques employ transformation rules that
correspond to the examples defined over a predefined Domain-
Specific Language (DSL). PYEVOLVE inherits the DSL of
TCInfer [33], a tool that infers rules for Java systems, and
extends it to the language shown in Figure 2. In this DSL,
a program transformation rule is a pair of Guard and Rule.
Essentially, the Guard validates which code fragments should
be transformed while the Rule describes how those code
fragments should be transformed. The Guard is composed
of a set of conjunctive predicates (Pred) on the attributes
(e.g., Type, Kind, Value) of the template variables. The Guard
evaluates where a template variable satisfies its predicate(s)
and returns a Boolean value accordingly. Column 2 of Table I
shows the Rule inferred from the code changes in column 1,
and column 3 shows the relevant Guard. For example, the

4



Rule in row 1 describes how the method call open should be
transformed (Rule), but only in the places where a string is
passed as an argument and TestIO is returned (Guard).

2) Fine-Grained Program Dependence Graph (fgPDG):
In their recent work, Nguyen et al. [34] presented fgPDG, a
sufficiently generalized program dependency graph that can be
used to mine semantically equivalent program fragments with
differing data-and control relations. Researchers utilize fg-
PDGs for many applications. For example, Nguyen et al. [34],
Smirnov et al. [46], and Dilhara et al. [21], used fgPDG
on Java and Python systems to mine semantically equivalent
repeated code changes, while Noda et al. [47] used fgPDG
to mine repeated bug fixes and repair unfixed similar bugs.
Our key idea for determining if the target code contains an
equivalent code for TLHS (see Definition III.3) regardless of
data-and control-flow is to construct a fgPDG for the TLHS
and determine if it is a subgraph of the target code’s fgPDG.
Then, we adapt the inferred rule to match the target code. For
example, to match the target code in Listing 2, the learned
rule in row 4-Table I must be adapted to Listing 3.

Listing 3: Adapted transformation rule to match with Listing 2
1 :[[v0]] = 0 ⇒⇒ :[v3]
2 :[v3] :[[v0]]=numpy.sum(:[v2])
3 for :[[v1]] in :[v2]:
4 :[[v4]] = :[[v0]] + :[[v1]]
5 :[[v0]] = :[[v4]]

To achieve this, we extend fgPDG with two new nodes: Iden-
tifierHole and AlphaHole, which represent template variables
in template expressions.

Definition III.4 (IDENTIFIERHOLE: I). VI (:[[v]]) represents
a variable identifier in code (analogous to w+ in regex). To
denote VI in fgPDG, we add the new node, IdentifierHole.

Definition III.5 (ALPHAHOLE: A). VA (:[v]) represents an
expression (e.g., method call – np.dot(), list –[1,2], and
dictionary – {"one":1}) or a statement (e.g., an assignment).
To denote VA in fgPDG, we use the new node, AlphaHole.

B. Data-flow Control-flow aware rule inference
PYEVOLVE generates transformation rules for applying

CPATs to target code. First, it uses INFERRULE [33] to infer
the transformation rule for the input CPATs, then adapts the
rule based on the data and control flow in target codes, which
we call data-and control-flow aware rule inference, formally:

Definition III.6 (DATA-AND CONTROL-FLOW AWARE RULE
INFERENCE). For given input code changes {i0 → oo, ...in →
on}, the existing “Transformation by Example” techniques
infer transformation rule TR such that TRk(ik) = ok, k ∈
{0...n}. Control- and data-flow aware rule inference generates
an adapted TRA

k for each TRk that matches a target code.

1) Input: In our previous research, we introduced R-
CPATMINER [21], a tool for collecting CPATs that developers
performed in Python systems. Our previous research also
conducted an empirical study of diverse 2,500 CPATs, which
revealed the existence of four kinds of frequently occurring

getEvalArray()

Assignment 

Any(to_eval)

int(dif)

For loop

Add Assignment

int(total)

Assignment

int(n_diff)

Assignment

number(0)

para

def

def

para

cond

para
def

para

def

def

para

para

getDiff()

recv
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(a) fgPDG of code Listing 2 (fgPDGT)
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Add Assignment

Assignment

number(0)

def
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def
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para

:[[v1]]
Int

(:[[v0]])

Control node

Data node

Action node

Identifier Hole

:[v2]

Alph Hole Data edge

Control edge

(b) fgPDG of TLHS of row 4-Table I (fgPDGR)

Figure 3: Sub-graph matching - nodes with blue edges are the
matched sub-graph of fgPDGR in fgPDGT (GM )

CPATs in Python ML systems: (i) dissolve for loops to do-
main-specific abstractions (e.g., row-4-Table I) (ii) update API
usage (e.g., row-2-Table I), (iii) transform to context managers
(e.g., row-3-Table I), and (iv) use advanced language features
(e.g., Python list comprehension). We use the same CPATs as
input to PYEVOLVE.

2) Generating fgPDGs: A fgPDG is a directed graph
consisting of three types of nodes and two types of edges.
(i) Data Nodes (ND) represent variables, field accesses, and
constants. For example, the variable n_diff in Figure 3(a)
is a data node. (ii) Action Nodes (NA) represent operations
on data, e.g., array accesses, and method calls. For exam-
ple, in Figure 3(a), the methods calls getEvalArray() is an
Action node, and (iii) Control Nodes (NC) represent control
statements, such as If for branching, For for looping (see
Figure 3(a)). (i) Control edges represent control relations
between the statements/operations and the control nodes on
which their executions depend, (ii) Data edges represent the
data flow of fgPDG nodes. Figure 3(a) shows labels on each
edge, indicating the type of data flow as defined by Nguyen
et al. [34], such as para, def, or cond.

We first generate an fgPDG for the target code. For example,
Figure 3(a) shows the fgPDG generated for the target code
in Listing 2. One of the difficulties in generating an fgPDG
for Python code is the lack of type information at compile
time, which is critical for mining semantically equivalent
code. To overcome this challenge, we employ type inference,
a technique for inferring the type information of program
elements based on data-flow information available at compile
time. For this purpose, we use PYTYPE [37], developed by
Google, which is widely used by the Python community.

Second, we generate an fgPDG for the left side of the
transformation rule (TLHS). Figure 3(b) shows an example
fgPDG generated for the TLHS in row 4-Table I. In addition to
the three nodes used by Nguyen et al. [34], we added two more
nodes to the fgPDG —IdentifierHole (see Definition III.4) and
AlphaHole (see Definition III.5) —to generate the FGPDG of
TLHS. For example, the fgPDG nodes, :[v2] and :[[v0]] in
Figure 3(b) are examples of AlphaHole and IdentifierHole.

3) Identifying potential sites: We now describe how we
identify potential target code sites to apply CPATs. Concep-
tually, given the fgPDG of the target code (fgPDGT) and
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n_diff = 0
to_eval = getEvalArray()
for dif in to_eval.getDiff():       
    total = n_diff + dif
    n_diff = total

:[[v0]] = 0
to_eval = getEvalArray()
for :[[v1]] in :[v2]: 
    total = :[[v0]] + :[[v1]] 
    :[[v0]] = total

(a) RENAMETEMPLATEVARS: Rename matched program ele-
ments with template variables

:[[v0]]=0
to_eval=getEvalArray()
for :[[v1]] in :[v2]: 
    total =:[[v0]]+:[[v1]] 
    :[[v0]] = total

:[[v0]] = 0
:[v3]
for :[[v1]] in :[v2]: 
  :[[v4]]=:[[v0]]+:[[v1]] 
  :[[v0]] = :[[v4]]

(b) NORMALIZECONTEXT: rename the context with
template variables as necessary

(c) SUBSTITUTENODES: generate Adapted Transfor-
mation Rule (TA

RHS)

Figure 4: Steps in Algorithm 2 that are followed by Listing 2 and the rule in row 4-Table I to be adapted as a rule in Listing 3.

Algorithm 1 Match nodes from fgPDGT and fgPDGR

1: function MATCHEDNODE(cNode, tNode)
2: if NODETYPE(tNode) == IdentifierHole then
3: if cNode.ASTNode == SimpleName then
4: if GUARDSMEETS(cNode,tNode) then
5: return True
6: else if NODETYPE(tNode) == AlphaHole then
7: if cNode.ASTNode==(Expression or Statement) then
8: if GUARDSMEETS(cNode,tNode) then
9: return True

10: else if NODETYPE(cNode) == NODETYPE(tNode) then
11: if NODETYPE(cNode) ==(ND Or NC Or NA) then
12: if GUARDSMEETS(cNode,tNode) then
13: return True
14: return False

the fgPDG of the TLHS (fgPDGR), PYEVOLVE determines
whether the fgPDGR is a sub-graph of fgPDGT and if it is, it
reports the matching nodes as the locations to apply the rule.
This differs from typical sub-graph mining problems in two
ways. (i) AlphaHole in fgPDGR can match against one or more
nodes in fgPDGT, and (ii) data nodes in fgPDGR can match
transitively to data nodes in fgPDGT via Data edges [34].
Therefore, the matched sub-graph can be a disconnected graph.

Figure 3(a) (fgPDGT) depicts the fgPDG generated for the
target code Listing 2, whereas Figure 3(b) (fgPDGR) depicts
the fgPDG generated for the TLHS of rule in row 4-Table I.

Algorithm 1 describes how we match two nodes from
fgPDGR and fgPDGT based on node kinds and the related
Guard. If both nodes are in same category, i.e., ND, NA, or
NC (see Section III-B2), the operation matches them based on
Guards (line 12). For example, in Figure 3, the ND, number(0)
in fgPDGT, matches the ND, number(0), in the fgPDGR.
The node kind IdentifierHole matches the identifiers, hence
the operation determines if the target node’s AST kind is
SimpleName and whether the Guard matches (see 4). For
example, the IdentifierHole, :[[v0]] in Figure 3(b) matches
with the ND, n_diff, which has type->int as the Guard. Alpha-
Hole, matches with any expression (e.g., method invocation) or
statement (e.g., for statement) if they meet the Guard. Hence,
AlphaHole can match one or many nodes in fgPDGT. The
:[v2] in Figure 3(b) matches two nodes in the fgPDGT that
are relevant to the method call to_eval.getDiff().

We recursively walk through nodes and their child nodes,
and then perform the operation MATCHEDNODE to obtain a
matched fgPDG (GM), which is a sub-graph of the fgPDGT. In
order to match with data flow variants, we also check whether
the Data nodes of fgPDGR are transitively matched through
Data edges to Data nodes in fgPDGT. For example, the target

Algorithm 2 Generate Adapted Rules
1: function GENERATEADAPTEDRULE(TLHS, TRHS, GM,targetCode)
2: LHSA ← RENAMETEMPLATEVARS(targetCode,GM)
3: TA

LHS ← NORMALIZECONTEXT( LHSA)
4: TA

RHS ← SUBSTITUTENODES( TA
LHS,GM)

5: if ISSAFE(TA
LHS → TA

RHS ) then
6: return TA

LHS → TA
RHS

7: function SUBSTITUTENODES
8: TA

RHS ← SUBSTITUTE(TA
LHS ∩ TLHS in TA

LHS with TRHS)

code in Listing 2 adds the two values, n_diff, and dif, together
and assigns it to a variable total, and then it is reassigned
to n_diff whereas the TLHS directly assigns the value to
the template variable, :[[v0]]. These data flow variants can
be matched if we transitively match the code through the
Data edges. Therefore, the nodes int(n_diff), Assignment,
and number(0) in Figure 3(b) are matched transitively and
are disconnected from the main graph. Finally, we obtain
the matched graph (GM), a disconnected sub-graph which
primarily contains information about the locations where the
nodes in CPAT can be applied.

4) Inferring transformation Rules (TRA : TA
LHS → TA

RHS):
Now we know the code elements in the target code that
correspond to nodes in TLHS, the next step is to infer the
adapted TRA (Definition III.6) that can be applied to automate
the program transformation. The higher level intuition is to:
(i) capture the structure of the target code that is matched
to fgPDGT, and (ii) infer an adapted transformation rule
(TA

LHS → TA
RHS) by making matched nodes in the target code

as holes, if necessary, and creating or deleting the new holes
in the TLHS or TRHS to transform the matched nodes and the
context. We now explain the steps we follow to adapt the
rule in row-4-Table I (inferred from Listing 1) to the rule in
Listing 3, which can be applied on Listing 2, an unseen variant.

In order to generate the adapted transformation rule (TRA),
we must first rename the matched nodes with the matched
Template Variable in fgPDGR. RENAMETEMPLATEVARS in
Algorithm 2 renames the matched nodes in the target code us-
ing GM which contains which template variables are matched
to which target code nodes. As shown in Figure 4(a), we
rename, :[[v0]] −→ n_diff , and :[[v1]] −→ dif . AlphaHole
(:[v2]) is used for to_eval.getDiff() because it matches sev-
eral nodes, resulting in the renaming of an entire expression.

The next step of generating TRA is to rename the target
code’s context, i.e., unmatched code nodes, using appropriate
template variables. We use the template variable VA, (:[v])
to rename statements (e.g., for loop), whereas VI (:[[v]]),
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is used to rename identifier names. The nodes that have
been renamed thus far in the operation in line 2 are taken
into consideration when deciding which template variable to
employ. We use a new VA, if none of the nodes in a statement
have been renamed. For example, :[v3] in Figure 4(b) is used
to rename to_eval = getEvalArray(). We use VI to rename
identifiers that are still intact after part of a statement has
already been replaced. Here, we use the same VI for the same
identifier. For example, in Figure 4(b), we use the [[:v4]] to
rename the identifier total.

The next step in Algorithm 2 is to use the operation SUB-
STITUTENODES on TA

LHS to generate TA
RHS which performs

two actions: (i) replaces the nodes TA
LHS ∩ TLHS with TRHS

(line 8). The replacing statements will be ordered as specified
in TRHS, so that the final transformation resembles the input
code change example, (ii) builds the context of the code using
the new template variables (TA

LHS - TLHS). Here, we discard
the transitively matched nodes (i.e., :[[v4]]) identified in
the sub-graph mining algorithm described in Section III-B3.
This ensures that the template expression, TA

LHS, matches the
data variants in the code and then transforms it to the code
defined in TRHS. The example in Figure 4(c) shows the two
actions performed by SUBSTITUTENODES. It first substitutes
the nodes TA

LHS ∩ TLHS in TA
LHS, i.e., the for loop and its body

from :[[v0]] = np.sum(:[v2]). Then, it uses the nodes TA
LHS

- TLHS, i.e., :[v3] to create the context. Finally, the algorithm
outputs the adapted rule, TA

LHS → TA
RHS.

Handling variations on the TA
RHS: When PYEVOLVE

generates TA
RHS, there may be more than one way to place

the TRHS along with the context in the target code. One may
assume that PYEVOLVE can output all the possible forms
of TA

LHS that can be created and then seek the developer to
choose the final rule. However, this becomes impractical as the
number of possible variations of TA

RHS increases with the size
of TRHS and context. Therefore, PYEVOLVE always puts the
TRHS in the place of the last matched data node, and allows the
developer to change the rules if they need a different variant.
Given that most CPATs often replace a more complex idiom
on the left side (involving several statements) with one or two
statements on the right side, handling variations on the right-
side would not occur often in practice.

5) Eliminating Unsafe Transformations: To safely trans-
form code, refactoring researchers [30], [31], [63] use precon-
ditions that must be satisfied before transforming a target site.
In a similar spirit, the operation ISSAFE in Algorithm 2 evalu-
ates lightweight preconditions on the identified transformable
code locations (GM) before applying the rule to a target site.
PYEVOLVE uses the following preconditions:
Precondition 1: Some CPATs may involve the deletion of
variables used in TLHS. For example, in Listing 2, the loop
variable dif and the local variable total will be deleted and
will no longer be available once np.sum replaces the original
for loop. However, in Python, loop and local variables can be
used outside the scope of the loop or block where they are
initialized, e.g., they can be used further down in the code
after the for loop. If that was the case, transforming the loop

in Listing 2 to np.sum and deleting those two variables would
be unsafe. PYEVOLVE checks to see if any variables that are
marked for deletion are later used in the code. If this is the
case, PYEVOLVE does not proceed with the transformation.
Precondition 2: The fgPDG-based matching algorithm, as
described in Section III-B3, can identify target sites in a
program that contain extra statements within scopes defined
in TLHS. This would make the transformation unsafe. For
example, suppose that Listing 2 contained an additional state-
ment such as print(dif) inside the for loop body. The
matching algorithm would identify this as a potential site to
transform. However, this target site should not be replaced by
numpy.sum because it does not preserve semantics. To prevent
transforming such target sites and ensure safety, PYEVOLVE
discards target sites that contain outgoing edges from action
nodes (i.e., NA) or control nodes (i.e., NC) in the matched
graph (i.e., ∈ GM) to the nodes ∈ fgPDGT (but /∈ GM).
Precondition 3: The TRHS of CPATs might contain APIs from
third-party libraries (e.g., TensorFlow). Transplanting such
CPATs into projects that do not use those libraries would break
the code. To ensure the transformation’s safety, PYEVOLVE
checks whether it can fully resolve the API invocations in the
TRHS. For example, if the tf.sum is in the TRHS, PYEVOLVE
checks the project’s requirments.txt [88] to see if the Ten-
sorFlow is listed as one of the project’s libraries. If it is not
included, it will discard the transformation.

Defining a complete list of preconditions is challenging, but
it can be addressed by capturing more context. Therefore, our
implementation is flexible to express additional preconditions
as they emerge. We further elaborate on safety in Section V.

IV. EVALUATION

We empirically evaluate PYEVOLVE and we answer the
following research questions:
RQ1. What is the effectiveness of PYEVOLVE in gen-
erating correct code transformations? We conduct cross-
validation to determine that PYEVOLVE correctly transforms
code by replicating real-world CPATs. We report PYEVOLVE’s
overall effectiveness by its precision and recall.
RQ2. What is the contribution of data- and control- flow
aware rule inference to overall effectiveness? To perform
this analysis, we report the number of changes that would be
impossible to perform without the features in PYEVOLVE.
RQ3. How do developers find PYEVOLVE’s changes use-
ful? To answer this, we submit pull requests to open-source
projects containing patches generated by PYEVOLVE and
record the developers’ responses.

A. RQ1: What is the effectiveness of PYEVOLVE in gener-
ating correct code transformations?

To answer this question, we replicate with PYEVOLVE thou-
sands of transformations that open-source developers applied
manually on their projects. We conducted cross-validation
to test whether PYEVOLVE correctly transforms real-world
CPATs. We divided the human adaptations published by Dil-
hara et al. [21] into training and testing sets. The training
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set is used to learn the initial transformation rules, while the
test set is used to apply the CPATs learned from the training
set. We assessed PYEVOLVE’s effectiveness by comparing
the syntactic and semantic equivalence of Python-transformed
codes to those that developers manually performed. We report
the overall effectiveness by computing precision and recall.

1) Dataset: Dilhara et. al. [21] studied 2,500 CPATs that
occurred in 1000 top-rated ML repositories. The authors
released CPAT dataset which is shown to be diverse with
respect to size, frequency, authors, and projects. With a survey
of 650 developers, the authors further confirm developers’
desire to have the identified CPATs automated in their code.
Hence, we use the same dataset to perform cross validation.
Section III-B1 provides further details on the CPAT dataset.

2) Experimental setup: Each CPAT , denoted as cpk, con-
sists of three or more instances of code changes, denoted as
{kcpk

1 , kcpk

2 ,...kcpk
m }. We split the change examples in each

CPAT into training and test sets for every cross validation
iteration. One iteration of our cross-validation process selects
one instance (e.g., kcpk

1 ) from which to learn the initial trans-
formation rule, and PYEVOLVE then generates adapted rules to
apply the CPAT to the test data (e.g., {kcpk

2 ,kcpk

3 ...kcpk
m }). We

identify one transformation trial as inferring a rule from kcpk

i

and applying it to kcpk

j where (i ̸= j). Applying PYEVOLVE to
our dataset yielded over 40,000 trials, providing a high degree
of confidence in the effectiveness of results.

To evaluate the effectiveness of transformations performed
by PYEVOLVE, we use the CPATs performed by developers as
the ground-truth (the oracle). We use PYEVOLVE to replicate
CPATs in Oracle and compare them to the changes made by the
original developer. We compute precision inside one iteration
as the percentage of PYEVOLVE-applied transformations (i.e.,
trials) that are correct (i.e., equivalent to the ground-truth).
We compute recall within one iteration as the percentage of
all transformations from the ground truth that PYEVOLVE was
able to transform. We obtain mean values over all iterations
once we have precision and recall for each iteration.

To determine if a PYEVOLVE-applied transformation is
correct, we have both a manual and an automated valida-
tion. Since we validate 40,000 transformation trials, manually
checking them is tedious. Therefore, we chose a statistically
significant (95% confidence level) random sample of transfor-
mation trials and manually validated the semantic correctness
by comparing them to the human-performed transformations.

For the automated validation, we were inspired by the steps
that Noda et al. [47] used to evaluate automated bug patches.
We denote the AST nodes that represent the TA

LHS and TA
RHS as

ALHS and ARHS, respectively. We judge that the transformed
code is syntactically correct, if the transformed code: (i) con-
tains all N ∈ ARHS - ALHS (new nodes), (ii) does not contain
all N ∈ ALHS - ARHS (deleted nodes), and (iii) contains all N
∈ ALHS ∩ ARHS (unchanged nodes). Conditions (1) and (2)
ensure that pattern code is successfully inserted and deleted.
Condition (3) assures that no excessive changes are made.

3) Results: In our replication of actual CPATs from open-
source projects, PYEVOLVE performed 40,000 transformation

trials in total, and we discovered that it achieved 97% pre-
cision and 94% recall. We manually validated a statistically
significant sample of 381 instances for semantic validity,
and it achieved 95% precision and 91% recall, which is
slightly less than the automated validation. This is because
the automated validation checks whether the CPAT nodes are
fully transplanted but does not check their semantic validity.
We primarily identified three causes for why PYEVOLVE either
failed to perform transformations at all or did so incorrectly.
1) Python union types: We employ type inference to obtain
the type information of a Python program element at compile
time, which is critical in mining semantically equivalent codes.
Python allows a single variable to hold values of multiple types
through the use of Union types. For example, the accumulator
variable n_diff in Listing 2 can be assigned to a String

before the for loop, making n_diff type of Union[int, str].
Algorithm 1 refers to node types for Guards with types to
determine whether two fgPDG nodes are equal. Due to the fact
that it searches for n_diff of type int rather than Union[int,

str], PYEVOLVE will not transform such cases.
2) Abstracting over one example: We use PyInfer to in-
fer initial transformation rules, which abstract over one ex-
ample, and might generate over-specialized transformation
rules. For example, m.at1.getM() can be generalized either
to :[[v0]].getM() or :[[v0]].:[[v1]].getM(). To decide this,
other existing techniques use multiple examples, which may
also result in over generalization. Our matching technique
is dependent on the fgPDG nodes, and thus on the rule’s
generalization when matching semantic variants in the target
codes. Hence, PYEVOLVE missed cases where it did not match
the generalization of the rule. However, developers evolve
Python in a Pythonic way [56], [57], and they evolve idioms
mostly in the same way. Hence, despite learning from one
example, PYEVOLVE achieved a high precision and recall.
3) Semantically nonidentical instances in CPAT: PyType
infers the type Any for program elements for which there is
insufficient information to determine the correct type. This
may result in unrelated examples being grouped into the same
CPAT . PYEVOLVE under-performs when we learn rules from
such cases or apply other rules to them.�
�
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PYEVOLVE achieves an overall precision of 97% and re-
call of 94% in the cross-validation evaluation, confirming
its effectiveness in inferring rules : TA

LHS → TA
RHS.

B. RQ2: What is the contribution of data- and control-flow
aware rule inference to overall effectiveness?

To answer this, we use PYEVOLVE to apply CPATs on new
target sites, and then we perform a sensitivity analysis to check
the impact of our novel contribution. We examined how many
data-and control-flow variants PYEVOLVE can automate that
would be impossible to automate using prior tools.

1) Dataset: We chose highly rated, best-in-class 20 Python
ML projects like TensorFlow, Pytorch, Keras, and Scikit-
Learn, etc. Finding opportunities for applying CPATs in these
high-quality, professionally-maintained projects shows that
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Table II: CPATs and their number of variants
Transformation Rule Guard N V I (V/N)

:[[v0]] = 0
for :[[v1]] in :[v2]:

:[[v0]] = :[[v0]] + :[[v1]]
→ :[[v0]]=np.sum()

type := :[[v0]] -> int
type := :[[v1]] -> int
type := :[[v2]] -> List[int]

32 19 59%

:[[v0]] = ''
for :[[v2]] in :[v3]:

:[[v0]] += :[[v2]]
→ :[[v0]]=:[[v1]].join(:[v3])

type := :[[v0]] -> str
type := :[[v3]] -> List[str]

8 3 38%

:[[v3]] = []
:[[v0]] = 0
for :[[v1]] in :[[v2]]:

:[[v0]] = :[[v1]] + [[v0]]
:[[v3]].append(:[[v0]])

→ :[[v0]]=np.cumsum(:[[v2]])

type := :[[v2]] -> List[int]
type := :[[v1]] -> int
type := :[[v0]] -> int
type := :[[v3]] -> List[int]
import := np -> numpy

6 5 83%

:[[v0]]=0
for :[[v1]], :[[v2]] in zip(:[v3], :[v4])):

:[[v0]] += :[[v1]] * :[[v2]]
→ :[[v0]]=np.dot(:[v3],:[v4])

type := :[[v0]] -> int
type := :[[v1]] -> int
type := :[[v2]] -> int

3 3 100%

sum(:[[v1]])/len(:[v1]]) → np.mean(:[v1]])
type :[[v1]] -> List[int]
type :[[v2]] -> List[int]

17 0 0%

:[[v0]]=np.dot(:[[v1]],
:[[v2]])

np.dot(:[[v0]],:[[v3]])

→ np.linalg.multi_dot([:[[v1]],
:[[v2]],:[[v3]]])

import := np : numpy
type := :[[vo]] -> Matrix
type := :[[v1]] -> Matrix
type := :[[v2]] -> Matrix
type := :[[v3]] -> Matrix

115 96 90%

:[[v0]]=:[[v1]].apply(tf
.batch_and_drop_remainder(:[[v2]]))

→ :[[v0]]=:[[v1]].batch(:[[v2]],
drop_remainder=True)

type := :[[vo]] -> Dataset
type := :[[v1]] -> Dataset
type := :[[v2]] -> int
import := tf : tensorflow

2 2 100%

if :[[v2]] in :[v3]:
:[[v1]] = :[[v3]][:[[v2]]].strip()

else:
:[[v1]] = :[[v4]]

→
:[[v1]] = :[[v3].get(:[[v2]],

:[[v4]]).strip()

type := :[[v1]] -> str
type := :[[v2]] -> str
type := :[[v3]] -> List[str]
type := :[[v4]] -> str

2 0 0%

Total 185 128 70%
N: Transformed CPAT instances V: Number of data and control variants of the original rule I : number of variants as a percentage of N

PYEVOLVE can detect subtle variants that even the most expert
programmers may have missed in their programming practices.

2) Experimental setup: We selected eight CPATs randomly
from the list provided by Dilhara et al. [21] and used PYE-
VOLVE to apply them to new target sites in the top-rated
projects. We only considered a subset of CPATs from Dilhara
et al.’s list, as manual validation of the entire corpus was
not possible. To determine if the modified code is a data or
control-flow variant, we manually compared the modified code
to the original input used by PYEVOLVE.

3) Results: Table II shows the evaluation results. Columns:
(i) Transformation Rule-shows the initial transformation rule
that the InferRule [33] generated, (ii) Guard-shows the Preds
relevant to rules, (iii) N-shows the total number of CPATs in-
stances transformed by PYEVOLVE, and (iv) V-shows the num-
ber of data or control-flow variants transformed by PYEVOLVE
and (v) I- shows the number of variants that PYEVOLVE made
possible as a percentage of all transformations.

As seen in Table II, running PYEVOLVE on 20 projects
transformed a total of 185 instances. This shows that even in
the top-rated projects, there are many instances to apply the
best practices, and developers often overlook these instances.

Table II shows the data-or control flow variants for each
rule. Of the 185 instances, 128 (70%) are data-flow or control-
flow variations of the examples used to build the initial
transformation rules. These instances would not be possible to
transform without PYEVOLVE. For example, Listing 4 shows
a target code that the PYEVOLVE was able to automate,
which uses a for loop to compute the cumulative sum when
np.cumsum should have been used instead. This is an unseen

variant of the LHS of the rule given in row-3–Table II because:
(i) there is an additional assignment statement, and (ii) it
accumulates cur_len differently than the rule does. The target
code was previously unseen during the rule inference, yet
PYEVOLVE was able to successfully automate it. This shows
the significant contribution of data-and control-flow aware rule
inference, and how PYEVOLVE improves over the previous
state-of-the-art for automating CPATs in Python ML systems.

Listing 4: The project Dialogue from Baidu uses a for loop
to compute cumulative sum of seq_lens

1 lod = []
2 cur_len = 0
3 seq_lens = [len(ids) for ids in data_ids]
4 for l in seq_lens:
5 cur_len = cur_len + l
6 lod.append(cur_len)�

�
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70% of PYEVOLVE’s code transformations are data or
control-flow variants that cannot be transformed using
existing techniques, thus improving the state-of-the-art.

C. RQ3:How do developers find PyEvolve’s patches useful?
To determine how useful PYEVOLVE is for real-world

developers, we automatically applied frequent CPATs from our
corpus to well known open source projects using PYEVOLVE,
and then submitted these patches as pull requests.

1) Dataset: We chose 35 best-in-class projects like Tensor-
Flow, Keras, PyTorch, and Scikit_Learn, and apply the CPATs.
Dilhara et al. [10] performed an empirical study on diverse
corpus of CPATs and revealed the dominant CPAT kinds in
Python systems. We chose the same set of CPATs which covers
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all the kinds of CPATs revealed by the authors. Section III-B1
provides an explanation of the identified CPATs kinds.

2) Experimental setup: PYEVOLVE transformed 181 in-
stances of CPATs that improve the performance and quality of
the affected Python code. These patches updated 116 source
code files and affected 1028 SLOC. After PYEVOLVE applied
the CPATs in each project, we ran all the test cases of projects
to ensure that the changes did not break the code. We then
notified the open-source project maintainers via pull requests.

3) Results: Even the highly rated and optimized codes, like
Keras, PyTorch, and TensorFlow, accepted our pull requests.
We submitted 40 pull requests with 181 CPAT instances. At
the time of writing the paper, 28 (70%) PRs containing 163
CPAT instances were accepted, 4 pull requests were rejected,
and the rest are still under review.

Developers found that our changes either enhance per-
formance or code quality, or both. A lead developer from
the project Prosodic, an NLP meta-library, mentioned that
“Well done, your changes are cleaner and either faster or
equivalently faster.” Another developer from the ML library
Transferlearning applauded the PR: “Your changes improve
the efficiency. I did not pay attention to this efficiency
before.” Developers confirmed that they were aware of the
best practices, but a tool like PYEVOLVE is able to identify
opportunities that even the experts missed. For example, a
developer from the ML library Ann-benchmarks remarked that
“The changes look good, I am not sure why we didn’t write it
that way before.” We submitted several CPAT instances where
the developers should have used efficient ML libraries that
were already being imported as dependencies to the project,
but instead they were employing inefficient Python constructs.
For example, in 83 (37%) instances, projects had libraries as
project dependencies, and in 62 (28%) cases, they already had
the library imported in the changed file, yet they still missed
the opportunity to use the ML library at its fullest potential.

We discovered four major reasons for pull request rejections.
1) Some CPATs are dependent on matrix shape. The perfor-
mance of matrix operations is affected by their shape. For ex-
ample, we submitted a pull request to project the Mne-python
to replace multiple calls to np.dot with np.linalg.multi_dot.
The developers rejected this because while multi_dot improves
performance on non-square matrices, it degrades performance
on square matrices. To address this issue, we must update
the Guards for this CPAT to account for the matrix shape.
However, to the best of our knowledge, there are no tools that
can infer matrix shapes in Python at compile time.
2) Dependencies on Hardware. ML library optimizations
depends on hardware platforms. For example, Pytorch is
optimized for GPU use, whereas NumPy is not. A pull request
submitted to Pytorch to replace a for loop with NumPy APIs
was rejected because NumPy is not optimized for GPUs.
3) Functions are already optimized with NumBa.
NumBa [39] is a library that translates annotated Python
code to optimized machine code at runtime. Because the
optimization occurs at runtime, the code is faster than it looks
at compile time, even if the code employs inefficient constructs

like Python loops. Our patch submitted to Pynndescent was
rejected because their code was already optimized at runtime.
4) Deprecated code no longer updated. Developer from
the project Basenji rejected our patch because it changed a
deprecated function that they will remove in a later release.�



�
	PYEVOLVE transformed 181 CPAT instances, of which

163 have been approved as of writing.

D. Threats To Validity

1) Internal Validity: Does our tool produce valid results?
We thoroughly evaluated the accuracy of the transformations
produced by PYEVOLVE. To understand if the inferred rules
can be trusted, the authors both automatically and manually
validate the transformations to identify non-conforming ones.
Furthermore, we develop a comprehensive setup that semi-
automatically validates the application of transformation rules
for a large and diverse set of CPATs.
2) External Validity: Do our results generalize? Although
PYEVOLVE is effective on the evaluated data-set, it may not
perform well on other subjects. To address this issue, we chose
a large dataset that previous researchers [21] used. It covers
different scenarios and has been shown to be diverse in terms
of frequency, size, authors, and projects. All our subjects are
open-source, and we have yet to evaluate proprietary codes.

We performed manual steps in RQ2 (identifying the vari-
ants) and RQ3 (submitting patches). These manual steps pre-
vented us from using all the CPATs for the evaluation of RQ2
and RQ3, so we only used a subset of CPATs. This could
impact the generalizability to other CPAT kinds. To mitigate
this, we used a randomly selected subset of CPATs.
3) Verifiability: The collected data, source code, and exe-
cutable of PYEVOLVE are publicly available [44].

V. DISCUSSION

1) Safety and soundness of our approach: The “Trans-
formation by Example” systems are not intended to replace
developers, nor are they designed to be sound [89]. Our
PYEVOLVE (like other “Transformation by Example” systems)
sits in the middle between a regex-based find-replace tool and
a refactoring tool. It has the expressivity of a find-and-replace
tool, while being syntax-aware. In contrast, a refactoring tool
or a compiler optimization tool have hard-coded, task-specific
rules that make them safer to use, but they are expensive
to develop. Determining the safety of such transformations
require deep analysis of the context, hence we do not recom-
mend blindly accepting patches from PYEVOLVE. However,
in our workflow, we trade-off safety for broader applicability
by relying on the developer’s insight in determining whether
it is safe to perform the transformation. In their study, Ketkar
et al. [33] observed that rules must sometimes be manually
vetted to ensure their safety and soundness. If this is the case,
our human-comprehensible rules make the process easier. In
our empirical evaluation, PYEVOLVE achieved 97% precision
and it did not require any intervention from us to achieve this.
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VI. RELATED WORK

We group the related work in two areas: (i) inferring and
applying changes, and (ii) Python code idioms.

Inferring rules and applying changes: Researchers have
developed an array of advanced program transformation sys-
tems that automatically generate programs according to given
input-output examples, so called “Transformation by Exam-
ple”. This technique has been used in a variety of appli-
cations, including (i) Java Type Migration [33], (ii) API
migration [1], [5], [15], [19], [54], (iii) String manipulation [6],
[7], and (iv) Data Structure Transformation [3]. LASE [53],
REFAZER [35], SPDIFF [4], TCINFER [33], APPEVOLVE [15],
and APIFIX [5] learn from multiple examples, determining
how to abstract the adaptations based on their commonalities
and differences, whereas SYDIT [49], A4 [54] and MEDI-
TOR [19] abstract over individual examples. These works aim
to generate a properly generalized rule by varying the number
of examples and its properties. However, they do not account
for previously unseen data- and control-flow variations of the
examples, resulting in low recall.

Several tools have been developed to address control flow
variants to some extent, with SPINFER [40] being the most
well-known among them. SPINFER [40] supports some control
variations through the use of the “...” operator to represent
any arbitrary number of unrelated/noise statements between
statements in the rule. However, it learns the potential locations
to insert “...” based on multiple input examples. This can
cause problems if the input examples do not cover all potential
locations for arbitrary statements, making it unable to handle
many unseen variants. Moreover, tools such as TCINFER [33],
LASE [53] decompose code changes into edit actions, allowing
them to handle some control-flow variations. However, they
do not consider control-flow constraints, causing potential
incorrect changes. Additionally, none of these tools are capable
of addressing data-flow variants. Therefore, we suggest a novel
graph-based technique that captures both data-and control-flow
unseen variants, then adapts the generated rules for the new
contexts and correctly handles complex CPATs.

Studies involving Python idioms: Researchers studied
Python idioms and how they were used in Python systems.
Phan-udom et al. [55] recommend 58 non-idiomatic and
55 idiomatic changes. Alexandru et al. [56] present a non-
exhaustive list of Python idioms gleaned from a developer
survey. Sakulniwat et al. [57] studied the evolution of Python
with statements over time, while Wang et al. [62] studied
Python code smells. However, none of these fully automate
code transformations. Using PYEVOLVE, we can infer the
rules and fully automate all these idioms. Recently, Zhang
et al. [23] employed AST rewriting to automatically refac-
tor nine Python idioms. However, they must hard-code the
transformations. In contrast, PYEVOLVE mines and automates
idioms, allowing for future-proof handling of emerging idioms.
This will make it much easier for Python-ML developers—the
dominant ecosystem in Python [11]—to keep up with the
rapidly advancing ML techniques.

VII. CONCLUSIONS AND FUTURE WORK

Despite Python’s and ML’s meteoric rise [58]–[61], support
for automated code evolution is still in its infancy. To advance
the science and tooling for automating code changes in Python,
we built PYEVOLVE, which infers transformation rules and
then applies them. Unlike existing tools that are hard-coded for
specific transformations, PYEVOLVE automates a wide range
of best practices using “Transformation by Example”.

Our thorough empirical evaluation of a diverse, represen-
tative corpus of 40,000 transformation trials from real-world
projects shows that PYEVOLVE is effective. It has a 97%
precision and 94% recall, and 70% of PYEVOLVE transforma-
tions would be impossible to automate without our technique.
Developers accepted 90% of the 181 CPATs that PYEVOLVE
produced, and their feedback shows PYEVOLVE’s usefulness.

We anticipate these future advancements for PYEVOLVE:
1) Version Awareness: CPATs use language and library con-
structs that continuously evolve based on their release versions.
We will extend the transformation rules to be version aware.
2) Community repository of transformation rules: The
rules that PYEVOLVE learns may change over time; some
rules may become obsolete while new rules are emerging.
For this reason, the researchers have called for a community-
maintained central database of CPATs [34] and their respective
rules [2], [33] that would need to be properly versioned,
maintained, and evolved. The likelihood of having data-flow or
control-flow variations, however, rises as the CPAT gets bigger.
If we add more rules to the database in order to represent all
variants, it would significantly increase the size of the database
and, in turn, expand the search space with significant slow
downs. Our novel approach uses a single rule that transforms
all other data- and control-flow variants, thus it significantly
reduces the number of rules while increasing the speed.
3) Expanding to other domains and languages: As new
idioms emerge, PYEVOLVE is future-proof and will continue
to handle new idioms. We think PYEVOLVE will aid ML
developers in keeping up with the rapidly advancing ML
technologies. While the corpus of programs we use in this
paper is ML systems, PYEVOLVE is readily applicable to
identify, recommend, and automate CPATs for any kind of
Python software system. Moreover, the core ideas presented
here are easily transferable to other programming languages.
Given how well they work even for a dynamically-typed
language like Python, we think they would work even better
for statically-typed languages. By making our design, imple-
mentation, and datasets available to the community [44], we
hope this would inspire many others to advance the field.
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