
1

Operation-based Refactoring-aware Merging:
An Empirical Evaluation

Max Ellis, Sarah Nadi, Danny Dig

Abstract—Dealing with merge conflicts in version control systems is a challenging task for software developers. Resolving merge
conflicts is a time-consuming and error-prone process, which distracts developers from important tasks. Recent work shows that
refactorings are often involved in merge conflicts and that refactoring-related conflicts tend to be larger, making them harder to resolve.
In the literature, there are two refactoring-aware merging techniques that claim to automatically resolve refactoring-related conflicts;
however, these two techniques have never been empirically compared. In this paper, we present RefMerge, a rejuvenated
Java-based design and implementation of the first technique, which is an operation-based refactoring-aware merging algorithm. We
compare RefMerge to Git and the state-of-the-art graph-based refactoring-aware merging tool, IntelliMerge, on 2,001 merge
scenarios with refactoring-related conflicts from 20 open-source projects. We find that RefMerge resolves or reduces conflicts in 497
(25%) merge scenarios while increasing conflicting LOC in only 214 (11%) scenarios. On the other hand, we find that IntelliMerge
resolves or reduces conflicts in 478 (24%) merge scenarios but increases conflicting LOC in 597 (30%) merge scenarios. We
additionally conduct a qualitative analysis of the differences between the three merging algorithms and provide insights of the strengths
and weaknesses of each tool. We find that while IntelliMerge does well with ordering and formatting conflicts, it struggles with
class-level refactorings and scenarios with several refactorings. On the other hand, RefMerge is resilient to the number of refactorings
in a merge scenario, but we find that RefMerge introduces conflicts when inverting move-related refactorings.

Index Terms—conflict resolution, refactoring, software merging, revision control systems

F

1 INTRODUCTION

Version control systems (VCS) play a crucial role in
enabling developers to collaborate on software projects.
Whether developers are working on the same branch [1],
using branch-based development [2], or using pull requests
to contribute changes from their external forks [3], integra-
tion issues can arise when they push their changes to the
repository. When two1 developers try to contribute different
changes to the same part of the code, a VCS reports a
merge conflict. Based on analyzing four open-source projects,
previous work found that merge conflicts occurred up to
19% of the time and could sometimes take several days to
resolve [4]. As our own analysis of 20 open-source projects
shows, this percentage can vary significantly per project (3%
- 55%), with a median of 16% (See Table 2). Even worse,
existing merge tools cannot detect every merge conflict;
such conflicts might not be discovered until building or
testing and may even be released in software products,
causing unexpected behavior [4], [5]. Thus, overall, while
merge conflicts are moderately frequent, they are a burden
when they occur. A recent practitioner survey shows that
developers spend time trying to understand and resolve
conflicts and that current support tools do not meet all their
conflict-resolution needs [6].

A common issue with merge conflicts is that most mod-
ern version control systems, such as Git [7], Mercurial [8],
or SVN [9], treat all stored artifacts as plain text and merge
files line by line. When two different changes happen to
the same line of code, a textual line-based merging tool
(often referred to as an unstructured merge tool [10]) will

1. Note that in this paper, we focus on the common practice of
merging of changes from two versions of the code, and do not con-
sider what is often referred to as octopus merges when more than two
branches/versions are involved.

report a conflict since it cannot automatically decide which
change to choose. However, a tool that understands the
nature of the code change that occurred may be able to
resolve the conflict [11], [12]. For example, refactorings are
code changes that modify the structure of the code to
improve its readability or maintainability without altering
its observable behavior [13]. Refactorings are one example
of a code change with well-defined semantics that an au-
tomated merge-conflict resolution tool can understand and
automatically resolve [11], [14], [15], [16]. For example, if
Bob refactors method foo by moving it from one class
to another on one branch while Alice, on another branch,
adds a line of code to foo’s body, an unstructured merging
tool will report a merge conflict because Bob and Alice
changed the same lines of code. However, a merge tool that
is aware of the semantics behind these refactoring changes
can resolve this conflict by adding the new line of code to
foo’s new location. Thus, understanding the semantics of
refactorings could avoid unnecessary merge conflicts and
save developers’ time. A recent study found that 15 of
more than 70 known refactorings are involved in 22% of
merge conflicts and tend to result in larger conflicts [14].
The considerable portion of merge conflicts that refactorings
complicate motivates the need for automated merging tools
that can handle refactorings.

While there are several research efforts that work on
understanding the structure of underlying code to automate
more merge-conflict resolutions [12], [17], [18], [19], [20],
[21], [22], there are mainly two efforts that specifically focus
on refactorings. The first is by Dig et al. [16] that proposes
an operation-based refactoring-aware merging technique, Mol-
hadoRef. At a high level, given two branches to be merged,
MolhadoRef first inverts refactorings on both branches,

2

textually merges the refactoring-free version of the code,
and then replays the refactorings on the merged code. Their
evaluation, based on one project, shows a 97% reduction of
merge conflicts.

The second approach by Shen et al. [15] is a graph-
based refactoring-aware merging approach implemented in
IntelliMerge. IntelliMerge converts code on both
branches to graphs, and performs a graph-based three-
way merge (i.e., considering the common ancestor of both
branches too) where it tries to match nodes across the three
versions. This node matching is based on a set of predefined
rules that are meant to capture refactoring semantics along
with a similarity score threshold. The authors evaluate
IntelliMerge on 10 projects and report 88% and 90%
precision and recall, respectively, when compared to the
resolution committed by developers.

While both approaches show promise in their evalua-
tion, they each have limitations. To begin, the premise of
MolhadoRef is that if the version-control history records
operations (i.e., the types of code changes that occur instead
of simple textual changes), then we can leverage these refac-
toring operations in the history to resolve conflicts. To that
end, MolhadoRef relies on developers using the researchers’
operation-based version control system, Molhado, prevent-
ing the approach from being used on modern version con-
trol systems. Furthermore, MolhadoRef’s implementation
supported only six refactorings, none of which are complex
refactorings such as Extract Method and Inline Method, which
the authors of IntelliMerge [15] argued limit operation-
based techniques due to the difficulty of inverting them.
Finally, while their evaluation shows promise, it was limited
to their own repository, thus MolhadoRef’s feasibility in
practice is unknown, especially since there is no publicly
available implementation of their approach. Even if there
was, MolhadoRef’s reliance on Molhado makes replicating
it on real-world projects impossible.

On the other hand, IntelliMerge relies on a similarity
score for detecting refactorings, which has been argued in
the literature to misidentify or miss refactorings [23]. This
can lead to introducing additional conflicts, unexpected
merges, or missing conflicts. In addition, IntelliMerge
does not consider how refactorings on each branch will
interact with each other. Furthermore, it has been evaluated
only w.r.t. resolving more conflicts using imprecise metrics
and the evaluation does not analyze whether the tool’s res-
olutions are correct or whether there were missed conflicts
that IntelliMerge did not detect. Finally, while criticizing
operation-based merging, the authors never performed an
evaluation comparing the two approaches. Given the merit
of solving merge conflicts when refactorings are involved,
we believe that a direct comparison will shed light on the
strengths and weaknesses of these techniques. Such insights
can help push the state of the art of refactoring-aware
merging techniques further.

To enable the comparison of these two techniques,
this paper has two goals. Our first goal is to rejuvenate
Dig et al.’s operation-based refactoring-aware merging tech-
nique [16]. This requires a re-design of the technique to
enable it to work with modern VCSs, such as git. We im-
plement our rejuvenated operation-based refactoring-aware
merging technique in RefMerge. While RefMerge follows

the same approach of reverting and replaying refactorings,
there are several novelties that differentiate RefMerge from
MolhadoRef: (1) Whereas MolhadoRef relies on a research-
based version control system, RefMerge is designed to
work directly on top of Git, since it is the most popular ver-
sion control system used by practitioners [24], (2) RefMerge
supports 17 refactoring types (instead of MolhadoRef’s six),
including Extract Method and Inline Method which were
argued to not have an inverse refactoring [15], (3) To de-
tect refactorings in Git history, RefMerge uses the state-
of-the-art refactoring detection tool, RefactoringMiner [25],
(4) RefMerge avoids checking for circular dependencies
by simplifying and combining refactorings upon detection,
and finally (5) We evaluate RefMerge on a large scale
to determine the feasibility of operation-based refactoring-
aware merging in practice.

Our second goal is to compare the two refactoring-aware
merging techniques on real-world projects that use Git as
their version control system, since it is the most popular ver-
sion control system used by practitioners [24]. To that end,
we perform the first large-scale comparison of operation-
based merging and graph-based merging techniques. In
summary, this paper makes the following contributions:

• An open-source design and implementation [26] of
operation-based refactoring-aware merging, RefMerge,
built on top of Git and which covers 17 refactoring types,
including two complex refactorings that complicate con-
flicts [14] and were proposed to be difficult for operation-
based merging [15], Extract Method and Inline Method.

• A large-scale quantitative comparison of the effective-
ness of operation-based refactoring implemented in
RefMerge versus graph-based refactoring implemented
in IntelliMerge. Our evaluation includes 2,001 merge
scenarios from 20 open-source projects.

• A systematic qualitative comparison of the strengths and
weaknesses of both techniques through a manual analysis
of their results across a sample of 50 merge scenarios.

• A discussion of how refactoring-aware merging can be im-
proved based on the identified strengths and weaknesses
of the two techniques.

Our evaluation results show that while IntelliMerge
reduces the number of refactoring conflicts a developer
needs to deal with, graph node matching errors and the
reliance on a similarity score cause IntelliMerge to
highly increase the number of false positives and false
negatives. On the other hand, RefMerge is able to reduce
the number of false positives while eliminating false nega-
tives. However, RefMerge sometimes introduces conflicts
while inverting move-related refactorings. Our findings
shed light on how both refactoring-aware approaches can
be improved, and we recommend adding support for more
refactorings with operation-based merging. Our complete
replication package is available online [26].

2 BACKGROUND AND MOTIVATING EXAMPLE

To introduce the terms we use, we briefly describe how
merging works in Git. We also provide an example to moti-
vate the need for refactoring-aware merging techniques.

3

(a) Base commit

(b) Left parent (c) Right parent

(d) Merge result for Git

(e) Ideal merge result

Fig. 1: The three versions (base, left, and right) of code from Scanner.java and Reader.java, as well as the results merged by
Git and an ideal merge tool.

2.1 Software Merging in Git

A merge scenario occurs when developers using Git need to
integrate changes they separately worked on in different
branches. The merge tools that are commonly utilized by
VCSs such as Git use three-way merging techniques [27]. In
three-way merging, two versions of the software are merged
by making use of these versions’ common ancestor, which is
the common version of the code the two versions originated
from before they started diverging. When merging two
branches, Git attempts to merge the most recent commit on
each branch, which we refer to as the parent commits, using
the common ancestor of these commits, which we refer to as
the base commit. The result of the merge is stored in a merge
commit. An example of a commit history leading to a merge
commit is shown at the top left corner of Figure 2.

A conflicting merge scenario is one where a merge tool
is not able to automatically merge the changes from the
two versions being integrated. Git reports the conflicting
locations by annotating them with <<<, ===, and >>>
markers. We call these regions conflict blocks. When a file
contains at least one conflict block, we refer to the file as a
conflicting file. We refer to the lines within the conflict block
as conflicting lines of code, or conflicting LOC. For example,

Figure 1d shows two conflicting files, Scanner.java and
Reader.java. Each file has one conflict block. The first
conflict block in Scanner.java has 3 conflicting LOC
while the second conflict block in Reader.java has 3
conflicting LOC (assuming we treat the whole body of the
Read class as one line here for better visualization).

2.2 Motivating Example

To understand how refactorings complicate merge scenar-
ios, consider the example inspired by multiple real con-
flicts in Figure 1. In the left branch (Figure 1b), the de-
veloper renames class Listen to Read in Reader.java
and extracts the notNull and validate calls from
addListener to a new method, validateObject. In
the right branch (Figure 1c), the other developer: (1)
moves class Listen from being an outer class in
Reader.java into an inner class of class Reader in
the same file, (2) renames method validateReader to
validateObject, (3) renames method addReader to
scanReader in Scanner.java, and (4) changes the code
inside addListener.

As shown in Figure 1d, Git reports a conflict in file
Reader.java because the developers rename Listen on

4

one branch and moves it into class Reader on the other.
Although both branches change the same lines of code, a
smart merge tool could automatically merge these changes
by considering their semantics and simply renaming the
moved class Listen to Read, as shown in the “ideal”
merge result in Figure 1e. We refer to the Git conflict in
Reader.java from Figure 1d as a false positive, because it
is a conflict that can be automatically resolved. If the con-
flict cannot be automatically resolved and required manual
intervention, we would refer to it as a true positive.

Git reports another conflict in file Scanner.java,
where the developer on the left branch extracts code from
the same region that the right branch edits the code
within addListener. To resolve this conflict, the developer
needs to compare the code inside of the extracted method
validateObject (which is not even highlighted as part of
the conflict) with the conflicting code from the right parent
shown in conflict block. Such a comparison is even worse
if the method was extracted to a distant location in the
file, or another file altogether. However, a merge tool that
considers the semantics of extract method would realize that
the changes from the right parent should be performed in
the extracted method, rather than in addListener and that
these changes can be merged, as shown in Figure 1e.

Figure 1e shows the ideal merge result for this sce-
nario. This merge result avoids the unnecessary conflict
in Reader.java by understanding the semantics of the
rename and move operations. It also avoids the unnec-
essary conflict in Scanner.java by understanding the
semantics of the extract method operation and applying
the right branches changes in validateObject. Note,
however, that the ideal merge result also reports a conflict in
Reader.java and Scanner.java for validateObject.
By renaming validateReader to validateObject on
the right branch and extracting a method with the same
name on the left branch, the developers introduce an acci-
dental override, which could introduce bugs or critical errors
that may not be discovered until their software is released.
Git fails to report this because the developers did not change
the same lines of code. Such a case illustrates Git reporting
a false negative, where the merge tool should report a conflict
because integrating these changes requires the developer’s
intervention, but instead Git silently merges the changes.

3 REFMERGE: REFACTORING-AWARE OPERATION-
BASED MERGING

The high level idea of operation-based refactoring-aware
merging is that if we invert refactorings before merging
and then replay the refactorings, there will be no refactoring
related conflicts to complicate the merge. Figure 2 presents
an overview of our implementation of RefMerge, which
consists of the following five steps.

1) Detect and Simplify Refactorings: We use RefactoringMiner,
a state-of-the-art refactoring detection tool with 99.7%
precision and 94.2% recall [25] to detect refactorings in
each commit between the base commit and each parent
respectively. We check if each detected refactoring can be
simplified and simplify the refactorings accordingly.

2) Invert Refactorings: We use the corresponding refactoring
list from Step 1 to invert each refactoring until all covered
refactorings have been inverted.

3) Merge: We use Git to merge the left and right parents, P ′L
and P ′R, after all their refactorings have been inverted.

4) Detect Refactoring Conflicts: We compare the left and right
refactoring lists for potential refactoring conflicts and
commutative relationships and merge them into one list.

5) Replay Refactorings: We finally use the merged refactoring
list to replay all non-conflicting refactorings.
In this section, we focus on our implementation of the

operation-based approach to enable it to work on top of Git,
which makes some of the details different from MolhadoRef.

3.1 Step 1: Detect and Simplify Refactorings

Refactoring Detection: We use RefactoringMiner to
detect refactorings in each commit between the base commit
and each parent commit respectively. We detect refactorings
in each commit instead of only comparing the base and par-
ent commits to ensure precise detection in longer histories.
This is an important difference from MolhadoRef as the use
of RefactoringMiner allows RefMerge to be implemented
for Git, instead of relying on a research-based VCS.

Refactoring Simplification: RefMerge processes each
detected refactoring one by one and keeps a list of processed
refactorings, ProcessedRefList, for the left and right branches.
We compare each detected refactoring to the refactorings
in ProcessedRefList to determine if it is either a transitive
refactoring or part of a refactoring chain (defined below).

We define transitive refactorings as successive related
refactorings of the same refactoring type. For example,
consider that method foo is renamed to bar. In the next
commit, bar is renamed to foobar. In this case, the two
method renamings are transitive and foo is eventually
being renamed to foobar. When RefMerge finds that a
newly detected refactoring is a transitive refactoring of an
existing refactoring in ProcessedRefList, it updates the related
transitive refactorings in ProcessedRefList instead of adding
a new refactoring. In this example, RefMerge would first
add rename foo to bar to ProcessedRefList. When it processes
rename bar to foobar, it detects that this is a transitive
refactoring of an existing refactoring in ProcessedRefList so
it will simply update the existing refactoring to rename foo
to foobar.

Refactoring chains consist of two or more refactorings that
touch the same program element. When two refactorings
touch the same program element, the details of that program
element will diverge from what is stored in Refactoring-
Miner’s refactoring object, causing the refactoring to not
be found when later inverting the refactoring or detecting
refactoring conflicts. For example, when a method is re-
named in class A and class A is renamed to class B in a
later commit, the first refactoring object will still associate
the method with class A. This means that if a transitive
refactoring is later performed on the same method, we will
not be able to detect the transitive relationship because the
methods will be associated with different classes.

Therefore, when we find that a refactoring is part of a
refactoring chain, we update the refactorings in the refactor-
ing chain. For example, consider that after A.foo is renamed

5

Fig. 2: An overview of RefMerge’s merging algorithm

to A.bar, class A is renamed to class B. Then in a later commit,
B.bar is renamed to B.foobar. Since method foo was renamed
to bar inside of class A, A.bar and B.bar have different
method signatures and the information that these Rename
Methods are transitive is lost. To address this, RefMerge
first adds the first refactoring rename A.foo to A.bar to the list.
When it later processes the second refactoring rename class
A to B, it adds this second refactoring to the list and also
updates the first refactoring to rename B.foo to B.bar. That
way, when RefMerge processes the third refactoring rename
B.bar to B.foobar, it can detect the transitive relationship and
update it accordingly. Our artifact contains all our detailed
logic for detecting transitive refactorings and refactoring
chains [26].

Refactoring Order: Since we do not know the order in
which developers performed refactorings within the same
commit, we cannot simply invert the refactorings in the
opposite order they are detected in. Instead, we reorder the
refactorings in a pre-determined top-down order based on
the granularity of the program element being refactored. For
example, class level refactorings come before method level
refactorings. Performing refactorings in a pre-determined
order is necessary because not all refactorings are transi-
tive. For example, refactorings that delete a program el-
ement (such as Inline Method) need to be inverted before
refactorings that create a program element (such as Extract
Method). Inverting or replaying the refactoring operations in
an incorrect order will lead to non-existent elements being
referenced and RefMerge being unable to correctly perform
the refactoring operations.

Combining transitive refactorings, updating refactoring
chains and using a top-down order has three advantages.
First, when inverting and replaying refactorings, all tran-
sitive refactorings are combined and can be treated as if
they were detected at a coarse-grained granularity. This is an
important distinction from MolhadoRef, because it reduces
the number of refactorings that need to be performed and
simplifies conflict detection while at the same time ensuring
precise refactoring detection. Second, the combination of
updating refactoring chains and using the pre-determined
order removes any need to keep track of the order that the

TABLE 1: The list of 17 refactorings supported by
RefMerge and their corresponding inverse refactorings.

Refactoring Inverse Refactoring

RenameMethod(m1, m2) RenameMethod(m2, m1)

MoveMethod(c1, c2) MoveMethod(c2, c1)

Move&RenameMethod(c1.m1, c2.m2) Move&RenameMethod(c2.m2, c1.m1)

RenameClass(c1, c2) RenameClass(c2, c1)

MoveClass(loc1, loc2) MoveClass(loc2, loc1)

Move&RenameClass(loc1.c1, loc2.c2) Move&RenameClass(loc2.c2, loc1.c1)

InlineMethod(m1, m2.lx-ly) ExtractMethod(m2.lx-ly, m1)

ExtractMethod(m1.lx-ly, m2) InlineMethod(m2, m1.lx-ly)

PullUpMethod(cx-cy,c2) PushDownMethod(c2,cx-cy)

PushDownMethod(c1,cx-cy) PullUpMethod(cx-cy,c1)

RenameField(f1, f2) RenameField(f2, f1)

MoveField(c1, c2) MoveField(c2, c1)

Move&RenameField(c1.f1, c2.f2) Move&RenameField(c2.f2, c1.f1)

PullUpField(cx-cy,c2) PushDownField(c2,cx-cy)

PushDownField(c1,cx-cy) PullUpField(cx-cy,c1)

RenamePackage(p1, p2) RenamePackage(p2, p1)

RenameParameter(p1, p2) RenameParameter(p2, p1)

refactorings are detected in. Lastly, using a top-down or-
der while simplifying refactorings automatically breaks any
circular dependencies between refactoring operations. This
is another important difference from MolhadoRef which
required user intervention to help resolve circular depen-
dencies; by automatically breaking circular dependencies,
RefMerge allows the user to focus on the conflicts.

3.2 Step 2: Invert Refactorings

Once refactorings are detected, RefMerge creates a
refactoring-free version of each parent commit by inverting
the refactorings in the ProcessedRefList on each branch from
Step 1. To invert a refactoring r, RefMerge needs to create
and apply the inverse refactoring r̄. r̄ is an inverse of r
if r̄(r(E)) = E. For example, the inverse of a refactoring
that renames method foo to bar is another refactoring
that renames bar to foo. Table 1 provides a list of each
refactoring and the refactoring operation that RefMerge
uses to invert it.

RefMerge uses the information provided by Refactor-
ingMiner to create each inverse refactoring. Each refactoring
detected by RefactoringMiner is represented by a data struc-
ture that contains important information about the refactor-

6

ing. Among others, the data structure contains information
such as the refactoring type, information about the original
program element, and information about the refactored pro-
gram element. From the provided information, RefMerge
obtains the corresponding elements and executes the refac-
toring through a refactoring engine. Importantly, executing
the inverse refactoring does not only invert the refactored
program element, but it also changes any references to
the program element. This includes references added at
any point after the refactoring was performed. In the case
that the refactored program element is deleted in a future
commit, the inverse refactoring cannot be performed and
RefMerge moves on to the next refactoring.

3.3 Step 3: Merge
After all refactorings are inverted on both branches, only
non-refactoring changes remain in the parent commits. We
refer to this version of each parent as P ′ in Figure 2.
In this step, we textually merge P ′L and P ′R. Most same-
line or same-block conflicts that would have been caused
by refactorings are now eliminated through inverting the
refactorings. However, some same-line and same-block con-
flicts may still exist because additional edits may have been
performed to or beyond the refactored code.

For example, consider the conflict blocks in
Scanner.addListener in Figure 1. If the developer
adds several other lines of code to the extracted method,
those lines will be inlined to the validateObject method
invocation and reported in the conflict block. In this case,
RefMerge will report more conflicting lines than Git
because no matter how many lines of code are added to
Scanner.validateObject, Git’s conflicting region will remain
the same. While the extra conflicting lines that RefMerge
reports could be considered to be disadvantageous, inlining
the extracted code clearly indicates what code is part of the
conflict in a single location.

3.4 Step 4: Detect Refactoring Conflicts
Generally speaking, a pair of refactorings that touch un-
related program elements do not have any interaction.
However, a pair of refactorings that touch related program
elements will have interactions, which can be conflicting
or commutative. For each pair of refactorings, we have to
predetermine the interactions that the refactorings can result
in and then use that knowledge to detect conflicts and
commutative refactorings. Refactoring operations that con-
flict cannot both be replayed, while refactoring operations
that are commutative can be replayed in either order and
will result in the same code. We make the assumption that
two refactoring operations cannot both conflict and have a
commutative relationship. We carefully compute and revise
the conflict and commutative logic for each refactoring
combination, which we explain below and can be found in
our artifact [26]. RefMerge uses this knowledge to compare
each refactoring in the left branch with each refactoring in
the right branch and detect refactoring conflicts.

3.4.1 Detecting Conflicts
RefMerge first checks if the two refactoring operations
are conflicting. There are a series of preconditions that

must be met for two refactoring operations to conflict. To
illustrate, we provide an example using the conflict logic for
RenameMethod(m1,m2) and RenameMethod(m3,m4)
in Equation 1.

hasConflict(RenameMethod(c1.m1, c2.m2),

RenameMethod(c3.m3, c4.m4)) :=

((c1.m1 == c3.m3 ∧ c2.m2 6= c4.m4)

∨(c1.m1 6= c3.m3 ∧ c2.m2 == c4.m4))

∨(¬overrides(c1.m1, c3.m3) ∧ overrides(c2.m2, c4.m4)

∨(¬overloads(c1.m1, c3.m3) ∧ overloads(c2.m2, c4.m4)

(1)

These two refactorings result in a conflict if (1) the source
of both refactorings is the same program element (c1.m1 =
c3.m3) but their destinations differ (c2.m2 6= c4.m4) or (2)
the sources of both renames are different program elements
(c1.m1 6= c3.m3) but the renamed destinations are the same
program element (c2.m2 = c4.m4). In other words, if the
same method is renamed to two separate names or if two
different methods inside of the same class are renamed to
the same name with the same signature, then the refactor-
ings conflict.

In addition, two refactoring operations can conflict with-
out changing the same program element. We refer to this
as a semantic conflict. There are two examples of semantic
conflicts for RenameMethod/RenameMethod: (1) an acci-
dental overload and (2) an accidental override. In the case of
an accidental overload, two methods with different names
are renamed to the same name in the same class but have
different signatures. In the case of an accidental override,
two methods within classes with an inheritance relationship
are renamed to the same name with the same signature,
which causes one of the methods to override the other.
Semantic conflicts will not be detected by a text-based merge
tool such as Git because the same line is not changed by both
branches. The developer might not realize the problem until
it appears in testing, or worse in production. The Rename
Method and Extract Method refactorings are an example of
conflicting refactorings that can cause an accidental over-
ride, such as the motivating example in Figure 1.

3.4.2 Detecting Commutative Relationships
After RefMerge checks for refactoring conflicts, it checks for
a commutative relationship between the two refactoring oper-
ations using the corresponding predetermined commutative
logic. Two refactoring operations can only be commutative
if they do not conflict and if they are different types of refac-
torings. If the pair of refactorings meets these conditions
and they both refactor the same program element, then they
are commutative. For example, Rename Method and Rename
Method cannot be commutative because they are the same
refactoring type and there is no way the same program
element can be renamed on both branches to different names
without conflicting. However, Move Method and Rename
Method can be performed on the same program element
commutatively. Similarly, the Move Class and Rename Class
refactorings performed on class Listen in Figure 1 are an
example of commutative refactorings.

We present the commutative logic for
MoveMethod(m1,m2) and RenameMethod(m3,m4)
as an example in Equation 2.

7

isCommutative(MoveMethod(c1.m1, c2.m2),

RenameMethod(c3.m3, c4.m4) :=

(c1.m1 == c3.m3 ∧ c2.m2 6= c4.m4)

(2)

These two refactorings are commutative if the source of
both refactorings is the same program element (m1 = m3)
and their destinations are different (m2 6= m4). The idea
is that if a Move Method and Rename Method refactoring are
performed on the same program element, then we can move
the program element and then rename it, or rename it and
then move it.

After all detected refactorings have been compared be-
tween branches for refactoring conflicts and commutative
relationships, RefMerge combines the refactoring lists con-
taining non-conflicting refactorings from each branch into
one list. While RefMerge inverts the refactorings on each
branch in a top-down order (after simplifying the refactor-
ing lists to enable this), it orders the combined refactoring
list in a bottom-up order for replaying refactorings. Multiple
refactorings might touch the same program element, such
as a Move Method and a Rename Class. By renaming the
class before moving the method, RefMerge will not be able
to find the method refactoring, because the class that the
method is moved from will no longer exist. Since higher-
level program elements do not depend on lower level
program elements, replaying refactorings bottom-up allows
RefMerge to replay the refactorings without any additional
effort. The replay refactoring list for Figure 1 after detecting
refactoring conflicts and commutative conflicts would con-
tain Rename Method addReader to scanReader and Move
And Rename Class Listen to inner class Reader.Read.
The conflicting refactoring list would contain Extract Method
validateObject from addListener and Rename Method
validateReader to validateObject.

3.5 Step 5: Replay Refactorings

Finally, RefMerge replays the refactorings. For each in-
verted refactoring, RefMerge re-creates and performs the
refactoring that was originally performed by the developer.
Executing the refactoring includes updating all references in
the program, including those added on the other branch.

3.6 Current Implementation

Technologies and Tools: We implement RefMerge as
an IntelliJ2 plugin for merging Java programs. It consists
of four key modules corresponding to the steps of the
proposed technique. We use RefactoringMiner [25] to detect
the refactorings and use the IntelliJ refactoring engine to
programatically invert and replay the refactorings.

Supported Refactorings: Even though the idea of
operation-based refactoring-aware merging and our pro-
posed implementation of it generally applies to all refactor-
ings, there are more than 70 known refactoring types [13]; it
is a large engineering effort to implement every refactoring.
Instead of implementing every refactoring, we use a subset
of 17 refactorings to show the feasibility of the approach and
enable the empirical comparison.

2. https://www.jetbrains.com/idea

Note that there are 13 supported refactorings that
the IntelliMerge publication describes in its matching
rules [15]. However, we find that IntelliMerge’s imple-
mentation potentially supports an additional eight refac-
torings. When deciding which refactorings to support in
RefMerge, we prioritized the 13 refactoring types described
in the publication. To cover more refactorings from different
granularity levels, we also added support for Rename Param-
eter, Rename And Move Field, Rename And Move Method, and
Rename And Move Class from the eight additional refactor-
ings. Overall, RefMerge supports a subset of 17 out of the
21 refactorings IntelliMerge’s implementation supports.

When a refactoring is performed that RefMerge does
not support or RefMerge fails to invert, RefMerge results
in the same merge as Git for the program element. Thus,
RefMerge should improve on Git for supported refactor-
ings, but should be no worse than Git for refactorings that
are not currently supported. It is worth noting that our
open-source implementation of RefMerge is designed in
a modular way to easily allow for extension. In general,
adding a new refactoring requires adding a handler to
invert and replay the refactoring and adding logic for how
it interacts with the existing refactoring. Our artifact [26]
contains a step-by-step guide for adding a new refactoring.

4 EVALUATION SETUP

We compare the effectiveness of RefMerge, Git,
and the state-of-the-art refactoring-aware merge tool,
IntelliMerge [15] on 2,001 merge scenarios that
contain refactoring-related conflicts from 20 open-source
projects. These projects include the original 10 projects
IntelliMerge was evaluated on as well as an additional
10 projects with different distributions of conflicting merge
scenarios. We answer the following research questions:
RQ1 How many merge conflicts do the three merge tools report?

A tool that automatically resolves more merge con-
flicts will reduce the time and effort developers have
to spend resolving conflicts. We report conflicts at all
granularity levels (scenarios, files, and conflict blocks).

RQ2 What are the discrepancies between the merge conflicts that
RefMerge and IntelliMerge report? While either tools
may report less conflicts, which seems better at face
value, we need to investigate if they correctly resolve
the conflicts or if they miss reporting real conflicts. We
perform a qualitative analysis on the results reported
by RefMerge and IntelliMerge to understand the
strengths and weaknesses of each tool.

4.1 Project & Merge Scenario Selection

We first include the same 10 projects that the
IntelliMerge authors use in their evaluation [15].
To select these projects, the authors searched for the top
100 Java projects with high numbers of stargazers on
Github, and then selected the projects with the most merge
commits and contributors [15]. The authors then ran the
analysis by Mahmoudi et al. [14] on these 10 projects to
identify conflicting merge scenarios that have refactoring
changes involved in the conflict. In a nutshell, this analysis
replays merge scenarios in the Git history to find conflicting

8

TABLE 2: Number of conflicting merge scenarios with involved refactorings for the 20 projects we evaluate on. The 10
projects from the IntelliMerge paper are in bold. Our evaluation is based on the merge scenarios in Column c.

Project Stargazers Merge Scenarios a. Conflicting Merge
Scenarios

b. Conflicting Java
Merge Scenarios (%

from Col. a)

c. Conflicting Java Merge
Scenarios w/ Involved

Refactorings (% from Col. b)

d. Conflicting Java Merge
Scenarios w/ Only Involved

Refactorings (% from Col. c)

cassandra 6,882 10,719 4,509 (42%) 2,693 (25%) 922 (34%) 244 (27%)
elasticsearch 56,665 5,111 561 (11%) 504 (9%) 178 (35%) 30 (17%)
gradle 12,410 7,690 1,127 (15%) 300 (3%) 117 (39%) 28 (24%)
antlr4 10,738 1,935 398 (21%) 198 (10%) 100 (51%) 14 (14%)
platform frameworks support 1,609 67,584 3,690 (55%) 570 (15%) 96 (17%) 25 (26%)
deeplearning4j 12,208 6,997 566 (8%) 386 (6%) 93 (24%) 20 (22%)
realm-java 11,206 3,405 683 (20%) 312 (9%) 92 (29%) 23 (25%)
jackson-core 1,984 584 318 (54%) 201 (34%) 81 (40%) 17 (21%)
android 3,161 1,805 315 (17%) 208 (12%) 81 (39%) 9 (11%)
cometd 535 759 369 (49%) 173 (23%) 63 (36%) 11 (18%)
storm 6,278 3,626 267 (7%) 87 (2%) 33 (38%) 12 (36%)
ProjectE 308 386 79 (20%) 73 (19%) 30 (41%) 3 (10%)
javaparser 3,859 2,427 94 (4%) 73 (3%) 23 (32%) 6 (26%)
druid 24,576 1,498 151 (10%) 138 (9%) 17 (12%) 3 (18%)
androidannotations 11,171 739 73 (10%) 71 (10%) 15 (21%) 1 (7%)
junit4 8,198 400 46 (11%) 41 (10%) 14 (34%) 2 (14%)
MinecraftForge 4,945 792 77 (10%) 46 (6%) 14 (30%) 3 (21%)
iFixitAndroid 143 171 29 (17%) 24 (14%) 13 (54%) 0 (0%)
MozStumbler 609 934 32 (3%) 26 (3%) 10 (38%) 1 (10%)
error-prone 5,717 133 24 (18%) 21 (16%) 9 (43%) 1 (11%)

Total 2,001 453

ones, uses RefactoringMiner [25] to find refactorings in
the history of these conflicting merge scenarios, and then
compares the location of the refactorings to the location of
the conflict blocks to determine if a conflict has an involved
refactoring. At the time of the IntelliMerge publication,
these 10 projects contained 1,070 conflicting merge scenarios
with involved refactorings.

For generalizability, we expand our evaluation to cover
an additional 10 projects. Mahmoudi et al. [14] shared a
data set with the results of their analysis for 2,955 open-
source GitHub projects. We use this data set to select the
additional 10 projects for our evaluation. Our goal is to
have a selection of projects with different distributions of
(conflicting) merge scenarios to avoid any bias towards
project-specific practices. Thus, we sort the 2,955 projects
within the dataset based on the number of refactoring-
related conflicts each project has. We randomly select three
projects from the bottom 30% of the projects, four from the
middle 40%, and three from the top 30%.

Given the 20 selected projects, we collect an up-to-
date set of merge scenarios with involved refactorings by
re-running Mahmoudi et al.’s analysis [14] on the latest
history of each project as of September 26, 2021. Our artifact
page [26] contains the exact version of each project that we
consider. This means that for the 10 projects originally used
by IntelliMerge, our data set contains the original 1,070
merge scenarios as well as any additional ones that appear
in the Git history since their publication date.

Table 2 shows the number of merge scenarios in each
project, the number of conflicting merge scenarios, the
number of conflicting merge scenario with conflicting Java
files, the number of merge scenarios with refactoring-related
Java conflicts, and the number of merge scenarios with only
refactoring-related Java conflicts. The table shows that the
frequency of merging and frequency of conflicting merges
varies between projects. Thus, our evaluation covers projects
with frequent merge scenarios (e.g., cassandra and plat-
form frameworks support) as well as those with infrequent
merges in their history (e.g., error-prone or iFixitAndroid).

We also cover both projects that are conflict prone (e.g.,
cassandra and jackson-core) as well as those with infrequent
conflicts, regardless of frequency of merging (e.g., storm
and javaparser). Table 2 also shows the projects used in
the IntelliMerge paper in bold and provide the number
of stargazers of each project. Overall, we evaluate on
2,001 conflicting merge scenarios with involved refactorings.
Figure 3 shows the distribution of refactorings per merge
scenario that we evaluate on in each project. As shown, the
median number of refactorings per scenario varies widely
among the projects, with druid having the lowest median
and cassandra having the highest.

4.2 Reproducing IntelliMerge

Before describing the evaluation metrics we use for compar-
ing the merge tools, we need to ensure that we are correctly
running IntelliMerge. Thus, we first attempt to repro-
duce the results found in the corresponding publication [15]
using their exact setup and data, as shared in their Github
repository [28]. We share the exact steps we followed as well
as the details of the results of reproducing IntelliMerge3.

We run IntelliMerge v1.0.7 on the same 1,070 merge
scenarios used in the original publication, including their
same post-processing steps such as removing all comments
from the merged files. We use the same calculation proposed
by IntelliMerge’s authors to measure precision and re-
call for IntelliMerge and Git. They propose comparing
the auto-merged code with the manually-merged code to
measure precision and recall. They define auto-merged code
as code that is not part of a conflict block in a tool’s merge
result and manually-merged code as the code that appears in
the resolved merge commit in the git history. We use the
same diff tool provided by Git that the IntelliMerge
authors used to calculate the number of different lines
between the auto-merged and manually-merged code. Note
that IntelliMerge reports precision and recall based only
on the conflicting files in each merge scenario, not on all
changed files in the scenario.

3. https://github.com/max-ellis/IntelliMerge/tree/evaluation

9

druid
junit

MozStumbler

deeplearning4j

realm-java

iFixitAndroid

MinecraftForge

android
javaparser

androidannotations

storm
error-prone

gradle
platform_fmwk_support

elasticsearch

ProjectE
cometd

jackson-core

antlr4
cassandra

Project Name

0

1000

2000

3000

4000

5000

Re
fa

ct
or

in
gs

 p
er

 S
ce

na
rio

Fig. 3: Distribution of refactorings per merge scenario that we evaluate on in each project

We were not able to reproduce the exact numbers
found in the IntelliMerge paper [15]. After emailing
the authors, we verified that they perform manual post-
processing steps to deal with some cases that are caused
by the program elements being in a different order as well
as format related diffs, such as textually moving, reordering,
and cosmetic diffs. Because of these undocumented manual
post-processing steps, it is impossible to reproduce the exact
numbers in the IntelliMerge paper. Although we were
not able to get the exact numbers, the precision and recall
we obtained were within 10% of the numbers in their paper.
For further confirmation, we explicitly shared our setup3

with the IntelliMerge authors and received confirmation
that our setup is correct and that the differences in results
we obtained do not misrepresent IntelliMerge.

4.3 Tool Comparison Setup

After verifying with the IntelliMerge authors that we
are correctly running their tool, we could proceed with our
evaluation. Given the 2,001 merge scenarios, we identify the
base commit, left parent commit, and right parent commit of
each scenario. We provide each tool (Git, IntelliMerge,
RefMerge) with these three commits in order to perform
its three-way merge. We record the results of all changed
files in the merge scenario, as opposed to only conflicting
files (which is what the IntelliMerge evaluation does).
Considering the result of all changed files allows us to catch
cases where one of the tools introduces a conflict in a file
that Git did not originally report a conflict for. Additionally,
while the IntelliMerge authors removed comments in
their evaluation, we do not post-process the results of any
of the merge tools in any way to ensure that we see the
same results a developer using the tool in practice would
see. Overall, our goal in this evaluation is to minimize any
manual pre and post processing steps such that we can
compare the results of these tools in a practical setting.

Note that while the scenarios we evaluate on may have
refactorings that either tools do not support, we do not limit
the evaluation to only supported refactorings so we can also
understand how the tools handle unsupported refactorings.

We run our experiments on a quad-core computer with
Intel (R) Core (TM) i5-12600K CPU @ 3.70GHz, 32 GB RAM
and Ubuntu 20.04 OS. For feasibility of completing the
evaluation, we use a 15 min timeout for each tool.

4.4 Used Metrics and Analysis Methods

We choose not to use the same recall and precision metrics
that the IntelliMerge authors propose, because (1) these
metrics do not correctly capture the effectiveness of a merge
tool and (2) auto-merged code is not a reliable way to
measure false positives and false negatives.

Consider the merge conflict in Scanner.java in Fig-
ure 1d. If the developer chose to merge the changes from
the left branch in the manual merge, the manually merged
code will have 15 lines of code. Meanwhile, if a merge tool
always accepts changes from both branches, then the auto-
merged code will have 17 lines of code. In this case, Git diff
will report 2 different lines since the auto-merged code also
contains changes from the right branch while the manually
merged code does not. In this case, the recall will be 1 and
while the precision will not be 1, it will still be high (88%)
and will not reflect the fact that the tool failed to detect the
conflict. In their threats, the IntelliMerge authors them-
selves recognize that using manually committed code as
the ground truth is unreliable, because manually committed
files often contain mistakes.

Instead, in RQ1, we report the number of conflicts each
tool detects at various granularity levels (scenarios, files,
and conflict regions). Additionally, we do not only report
these numbers in isolation but instead report them at a
scenario level to understand the proportion of scenarios in
which each tool can improve the situation for a developer.

10

0

500

1000

1500

2000
Nu

m
be

r o
f C

ha
ng

ed
 Fi

le
s

RefMerge Timeouts No Timeouts IntelliMerge Timeouts

Fig. 4: Distribution of changed files per merge scenario
where timeouts occur in each tool.

Additionally, for RQ2, we manually sample merge conflicts
that differ between the merge tools to understand the qual-
ity of the merge results and how the behavior of these
tools differ in handling different types of merge scenarios.
A similar analysis has been used in the past by Cavalcanti
et al. [18] to get a better understanding of merge results.

5 RQ1: QUANTITATIVE TOOL COMPARISON

In this RQ, we compare the effectiveness of each tool in
resolving merge conflicts at all granularity levels: complete
merge scenarios, conflicting files, conflict blocks, and con-
flicting lines of code reported by each merge tool for the
merge scenarios in our data set. We first focus on comparing
the number of completely resolved conflicting scenarios.
Completely resolving a conflicting scenario is the best case
for any tool since this relieves the developer from looking
at this scenario. While a tool may not be able to completely
resolve a scenario, it may be able to reduce the number of
conflicting files or conflicting regions a developer needs to
deal with, or it may also reduce the size of the reported
conflicts in terms of lines of code (LOC). We report the cases
in which such reduction happens. Alternatively, a tool may
worsen the situation for a developer where it complicates
the conflict by reporting more conflicting files, blocks, or
lines of code. We first report detailed results of the evalua-
tion in Sections 5.1-5.2 and then provide an interpretation of
these results in Section 5.3.

5.1 Completely Resolved Merge Scenarios
Table 3 shows the breakdown of the merge results for each
project. The Total Scenarios column shows the number of con-
flicting Git scenarios with involved refactorings evaluated
for each project (same as Column c from Table 2). We then
show the results for IntelliMerge and RefMerge, respec-
tively. For each tool, we show the number of completely
resolved merge scenarios (column Resolved), the number
of merge scenarios where the conflict result changed from
what Git reports (column Changed), the number of merge
scenarios where the merge conflict remains the same as Git
(column Unchanged), and the number of merge scenarios
where the tool times out (column Timeout). Note that a
change in the conflict result could mean either a decrease or
increase in the number or size of the reported conflicts; we
discuss the details of these changed scenarios in Section 5.2.

As Table 3 shows, across all evaluated merge scenarios,
IntelliMerge was able to completely resolve 70 merge
scenarios out of the 2,001 total scenarios (i.e., 3%) while
RefMerge was able to completely resolve 122 (6%) scenar-
ios. The number of merge scenarios each tool completely
resolves indicates which tool can fully resolve more sce-
narios. However, not all scenarios have the potential to
be fully resolved. The strengths of refactoring-aware merge
tools is their ability to deal with refactoring conflicts. Thus,
merge scenarios with only refactoring related conflicts have
more potential to be fully resolved by a refactoring-aware
merge tool. Of the 2,001 total conflicting scenarios, 453
(23%) scenarios contain only refactoring related conflicts.
All 122 of RefMerge’s resolved scenarios are a subset of
these 453 scenarios, whereas only 35 of IntelliMerge’s
are. This means that RefMerge resolves 27% of such merge
scenarios, whereas IntelliMerge resolves only 8%, in
addition to 35 merge scenarios with other types of conflicts.

Looking at Table 3 from a project perspective,
IntelliMerge and RefMerge are each able to completely
resolve at least one scenario in 17 (85%) projects. Although
both tools resolve merge scenarios in 17 projects, there are
four projects where IntelliMerge resolves more merge
scenarios than RefMerge, while there are 11 projects where
RefMerge resolves more scenarios than IntelliMerge.
This suggests that the characteristics of the scenarios in each
project play a role in the tools’ capabilities in resolving them.

We note that RefMerge times out on 382 merge scenar-
ios across three different projects and IntelliMerge times
out on 870 merge scenarios across 11 projects. To investigate
the characteristics of the merge scenarios with time outs,
Figure 4 shows the distribution of changed files per merge
scenario where RefMerge times out, IntelliMerge times
out, or neither tool times out. The median number of
changed files in a merge scenario where RefMerge times
out and IntelliMerge times out are 1,236 and 1,000,
respectively. In all other merge scenarios where neither tool
times out, the median number of changed files is 150 files.
Thus, it seems that merge scenarios with a large number
of changed files causes both tools to time out. This makes
sense because as more files are changed, IntelliMerge
needs to build more, and potentially larger, graphs and then
match them, which leads to it taking more time in these
steps. As for RefMerge, more changed files adds more
work for RefactoringMiner which causes RefMerge to take
more time in refactoring detection. Overall, RefMerge and
IntelliMerge respectively time out on merge scenarios
with eight times and seven times more changed files than
those they do not time out on.

5.2 Merge Scenarios with Differences in Conflicts

We now look at the remaining scenarios that the tools are
not able to completely resolve, but for which the result of
the conflict changed. We use Figures 5-7 to discuss these
scenarios per project at the file, block, and lines of code
levels respectively4. There are two parts to each figure. On
the left-hand side, we provide a box plot of the overall

4. We use platform fwk supp as a shortened version of plat-
form frameworks support for better table sizing for readability

11

TABLE 3: Merging results for each tool, compared to Git. Number in parentheses shows the proportion from total scenarios
in each project. For each project, the tool that was able to completely resolve more merge scenarios is shown in bold.

Project Name Total Scenarios
IntelliMerge RefMerge

Resolved Changed Unchanged Timeout Resolved Changed Unchanged Timeout

cassandra 922 33 (4%) 108 (12%) 1 (0%) 780 (85%) 54 (6%) 204 (22%) 322 (35%) 342 (37%)
elasticsearch 178 3 (2%) 103 (58%) 0 (0%) 71 (40%) 9 (5%) 45 (25%) 85 (48%) 39 (22%)
gradle 118 1 (1%) 106 (90%) 0 (0%) 11 (9%) 9 (8%) 33 (28%) 75 (64%) 1 (1%)
antlr4 100 1 (1%) 96 (96%) 0 (0%) 3 (3%) 4 (4%) 39 (39%) 57 (57%) 0 (0%)
platform fwk support 95 5 (5%) 56 (59%) 1 (1%) 33 (35%) 9 (10%) 40 (42%) 46 (48%) 0 (0%)
deeplearning4j 93 3 (3%) 89 (96%) 0 (0%) 1 (1%) 5 (5%) 31 (33%) 57 (61%) 0 (0%)
realm-java 92 7 (8%) 82 (89%) 1 (1%) 2 (2%) 7 (8%) 32 (35%) 53 (58%) 0 (0%)
jackson-core 81 0 (0%) 81 (100%) 0 (0%) 0 (0%) 3 (4%) 25 (31%) 52 (64%) 0 (0%)
android 81 3 (4%) 78 (96%) 0 (0%) 0 (0%) 8 (10%) 28 (35%) 45 (56%) 0 (0%)
cometd 63 2 (3%) 59 (93%) 1 (2%) 1 (2%) 4 (6%) 20 (32%) 39 (62%) 0 (0%)
storm 33 1 (3%) 30 (91%) 1 (3%) 1 (3%) 1 (3%) 13 (39%) 19 (58%) 0 (0%)
ProjectE 30 1 (3%) 28 (94%) 0 (0%) 1 (3%) 0 (0%) 13 (43 %) 17 (57%) 0 (0%)
javaparser 23 3 (13%) 19 (83%) 1 (4%) 0 (0%) 2 (9%) 9 (39%) 12 (52%) 0 (0%)
druid 17 3 (18%) 15 (89%) 0 (0%) 0 (0%) 2 (12%) 9 (53%) 6 (35%) 0 (0%)
androidannotations 15 1 (7%) 14 (93%) 0 (0%) 0 (0%) 0 (0%) 9 (60%) 6 (40%) 0 (0%)
junit4 14 1 (7%) 13 (93%) 0 (0%) 0 (0%) 1 (7%) 8 (57%) 4 (29%) 0 (0%)
MinecraftForge 14 1 (7%) 10 (72%) 0 (0%) 3 (21%) 2 (14%) 7 (50%) 5 (36%) 0 (0%)
iFixitAndroid 13 0 (0%) 13 (100%) 0 (0%) 0 (0%) 0 (0%) 10 (77%) 3 (23%) 0 (0%)
MozStumbler 10 0 (0%) 10 (100%) 0 (0%) 0 (0%) 1 (10%) 7 (70%) 2 (20%) 0 (0%)
error-prone 9 1 (11%) 8 (88%) 0 (0%) 0 (0%) 1 (11%) 8 (88%) 0 (0%) 0 (0%)

Total 2,001 70 (3%) 1,017 (51%) 7 (0%) 907 (45%) 122 (6%) 592 (30%) 905 (45%) 382 (19%)

0

10

20

30

40

RefMerge
Git
IntelliMerge

(a) Overall
Distribution

Project
Reduced Confl. Files Increased Confl. Files

IntelliMerge RefMerge IntelliMerge RefMerge

cassandra 1 (33%) 34 (27%) 105 (567%) 33 (50%)
elasticsearch 4 (20%) 14 (21%) 99 (260%) 9 (67%)
gradle 7 (33%) 7 (25%) 86 (494%) 4 (100%)
antlr4 2 (56%) 11 (17%) 92 (445%) 4 (16%)
platform fwk supp 6 (68%) 5 (50%) 45 (350%) 4 (14%)
deeplearning4j 6 (67%) 3 (50%) 61 (150%) 9 (50%)
realm-java 11 (33%) 7 (33%) 45 (200%) 6 (58%)
jackson-core 0 (0%) 6 (29%) 79 (850%) 0 (0%)
android 6 (38%) 4 (13%) 55 (150%) 5 (23%)
cometd 2 (48%) 3 (25%) 48 (658%) 4 (15%)
storm 3 (33%) 2 (42%) 21 (340%) 0 (0%)
ProjectE 4 (12%) 3 (8%) 24 (79%) 4 (17%)
javaparser 5 (43%) 4 (22%) 8 (150%) 1 (100%)
druid 7 (43%) 1 (29%) 0 (0%) 0 (0%)
androidannotations 1 (67%) 2 (30%) 13 (100%) 0 (0%)
junit4 5 (33%) 2 (42%) 7 (150%) 4 (42%)
MinecraftForge 1 (10%) 1 (17%) 9 (100%) 1 (11%)
iFixitAndroid 5 (81%) 6 (20%) 5 (78%) 1 (33%)
MozStumbler 1 (25%) 4 (33%) 5 (50%) 0 (0%)
error-prone 4 (46%) 3 (25%) 3 (750%) 0 (0%)

Total 81 (38%) 122 (25%) 810 (350%) 89 (50%)

(b) Breakdown by merge scenario

Fig. 5: Conflicting files in merge scenarios. Boxplot shows
number of conflicting files per merge scenario while the
table shows number of merge scenarios where a tool re-
duced/increased the number of conflicting files, compared
to Git. In parenthesis, we show the median percentage
reduction/increase per merge scenario.

distribution of reported conflicts at the discussed granular-
ity level for all three tools across all evaluated scenarios.
On the right-hand side, we show a table that provides
the details of the conflicting scenarios from the Changed
column of Table 3. For each granularity level (conflicting
files, conflict blocks, and conflict size in terms of LOC), we
show the number of scenarios for which a tool increased or
decreased the resulting number of conflicts. For example,
for the last project error-prone in Figure 5b, we can see
that there are four scenarios that IntelliMerge reduced
the number of conflicting files for while it increased the
number of conflicting files for three scenarios. The percent-

age shown in parentheses is the median reduction/increase
per merge scenario in that project (or over all scenarios
in the last row of the table). For example, if Git reports
4 conflicting files while a tool reports 2 conflicting files,
then this is a (4 − 2)/4 = 50% reduction. In the example
of error-prone, the median reduction of the number of
conflicting files for the corresponding four scenarios is 46%.
The same interpretation of the numbers can be used for all
granularity levels, which we discuss in detail below. Ideally,
even if a tool cannot completely resolve a scenario, it would
be able to partially resolve some of the reported conflicts.
For each project, we show in bold which tool achieves the
most reduction and the least increase.

Conflicting files: We first look at the conflicting file
level in Figure 5. Figure 5a shows the distribution of the
number of reported conflicting files per merge scenario. The
figure shows that Git and RefMerge have a median number
of two conflicting files while IntelliMerge has a median
of eight. However, such a plot does not give us any indi-
cation about the developer experience on a scenario level,
when it compares to what they currently experience with
Git. To understand the tool’s behavior on a scenario level,
we look at the table in Figure 5b, which shows the number
of scenarios for which each tool results in an increase or
decrease in the number of conflicting files. Overall, the
table shows that IntelliMerge reduces the number of
reported conflicting files in 81 scenarios (4% of all evaluated
scenarios) by a median 38% reduction. On the other hand,
IntelliMerge increases the number of reported conflict-
ing files in 810 scenarios (40%) by a median 350% increase.
In other words, on average, IntelliMerge increases the
number of conflicting files by three-fold in these scenarios.
RefMerge reduces the number of reported conflicting files
for 122 scenarios (6%) by a median 25% reduction while it
increases the number of reported conflicting files for 89 (4%)
by a median 50% increase.

12

0

20

40

60

80

100

120

RefMerge
Git
IntelliMerge

(a) Overall
Distribution

Project
Reduced Confl. Blocks Increased Confl. Blocks

IntelliMerge RefMerge IntelliMerge RefMerge

cassandra 4 (29%) 68 (25%) 101 (767%) 58 (27%)
elasticsearch 5 (20%) 19 (14%) 94 (294%) 13 (29%)
gradle 10 (29%) 10 (25%) 91 (400%) 14 (50%)
antlr4 3 (20%) 16 (8%) 92 (479%) 7 (9%)
platform fwk supp 9 (50%) 13 (20%) 47 (508%) 9 (13%)
deeplearning4j 18 (44%) 13 (11%) 65 (167%) 10 (33%)
realm-java 22 (50%) 20 (28%) 47 (200%) 5 (23%)
jackson-core 0 (0%) 13 (17%) 80 (1580%) 3 (19%)
android 20 (39%) 11 (20%) 52 (119%) 8 (32%)
cometd 5 (26%) 7 (33%) 52 (790%) 6 (21%)
storm 3 (25%) 4 (29%) 25 (233%) 0 (0%)
ProjectE 4(15%) 5 (8%) 22 (94%) 5 (11%)
javaparser 3 (89%) 5 (12%) 11 (138%) 1 (100%)
druid 12 (60%) 3 (8%) 0 (0%) 1 (100%)
androidannotations 1 (89%) 5 (33%) 13 (114%) 1 (25%)
junit4 5 (60%) 4 (32%) 7 (233%) 3 (20%)
MinecraftForge 1 (5%) 3 (10%) 9 (100%) 3 (20%)
iFixitAndroid 6 (57%) 8 (18%) 7 (100%) 1 (50%)
MozStumbler 3 (50%) 6 (20%) 5 (86%) 0 (0%)
error-prone 2 (91%) 5 (33%) 5 (417%) 0 (0%)

Total 136 (48%) 239 (21%) 825 (378%) 149 (27%)

(b) Breakdown by merge scenario

Fig. 6: Conflicting blocks in merge scenarios. Boxplot shows
number of conflicting blocks per merge scenario while
the table shows number of merge scenarios where a tool
reduced/increased the number of conflicting blocks, com-
pared to Git. In parenthesis, we show the median percentage
reduction/increase per merge scenario.

Conflict Blocks: We now look at the conflict block
level in Figure 6b. The number of conflict blocks indicates
the number of individual conflicting regions a developer
needs to deal with. Figure 6a shows that Git and RefMerge
have almost the same overall distribution of number of
conflicting blocks per merge scenario (with a median of
4). However, IntelliMerge has a much higher median
number of conflicting blocks at 17. From Figure 6b, we
find that IntelliMerge reduces the number of reported
conflict blocks for 136 scenarios (7%) by a median 48%
reduction, while it increases the number of reported conflict
blocks for 825 scenarios (41%) by a median of 378%. On
the other hand, RefMerge reduces the number of reported
conflicts in 239 scenarios (12%) by a median 21% reduction
and increases the number of reported conflicts for 197
scenarios (7%) by a median of 27% increase. Additionally,
IntelliMerge has a high variance between projects. For
example, consider project druid. IntelliMerge reduces
conflict blocks in 12 merge scenarios by more than half (60%)
without increasing them in any merge scenarios. Inversely,
it increases conflict blocks in 80 merge scenarios for project
jackson-core by almost 16-fold without decreasing conflict
blocks in any merge scenarios. To investigate the cause of the
variance, we look at Figure 3. As shown, druid has the low-
est median number of refactorings in each scenario, while
the four projects that IntelliMerge struggles most with
(cassandra, antlr4, jackson-core, and cometd) have the highest
median number of refactorings. This suggests that merge
scenarios with a large number of refactorings complicates
the merge resolution for IntelliMerge. RefMerge does
not exhibit the same variance as IntelliMerge, typically
reducing conflicts more often than increasing conflicts or
reducing them as often as it increases them. To explore how
the number of refactorings performed in a project affects
RefMerge, we look at MozStumbler, error-prone, and antlr4
because RefMerge does well on them. We additionally look

0

100

200

300

400

500

RefMerge
Git
IntelliMerge

(a) Overall
Distribution

Project
Reduced Confl. LOC Increased Confl. LOC

IntelliMerge RefMerge IntelliMerge RefMerge

cassandra 23 (36%) 124 (26%) 85 (291%) 80 (14%
elasticsearch 39 (46%) 28 (14%) 64 (121%) 16 (28%)
gradle 37 (45%) 20 (26%) 69 (149%) 11 (61%)
antlr4 19 (30%) 21 (6%) 75 (102%) 18 (8%)
platform fwk supp 23 (59%) 24 (20%) 33 (129%) 16 (11%)
deeplearning4j 45 (45%) 16 (14%) 41 (148%) 15 (11%)
realm-java 53 (74%) 25 (20%) 29 (68%) 7 (25%)
jackson-core 8 (48%) 20 (14%) 72 (420%) 6 (10%)
android 54 (58%) 18 (15%) 23 (119%) 9 (14%)
cometd 15 (51%) 9 (36%) 43 (230%) 11 (9%)
storm 14 (39%) 12 (18%) 14 (113%) 1 (3%)
ProjectE 18 (45%) 8 (3%) 10 (75%) 5 (9%)
javaparser 11 (59%) 8 (24%) 8 (225%) 0 (0%)
druid 14 (85%) 6 (19%) 0 (0%) 2 (32%)
androidannotations 4 (87%) 8 (19%) 10 (42%) 1 (7%)
junit4 10 (65%) 5 (20%) 3 (18%) 4 (8%)
MinecraftForge 4 (27%) 3 (11%) 4 (150%) 4 (16%)
iFixitAndroid 7 (34%) 5 (13%) 5 (55%) 5 (21%)
MozStumbler 7 (60%) 6 (31%) 3 (38%) 1 (12%)
error-prone 3 (84%) 6 (47%) 5 (187%) 2 (25%)

Total 408 (51%) 372 (21%) 597 (169%) 214 (14%)

(b) Breakdown by merge scenario

Fig. 7: Conflicting LOC in merge scenarios .Boxplot shows
number of conflicting LOC per merge scenario while the
table shows number of merge scenarios where a tool re-
duced/increased the number of conflicting LOC, compared
to Git. In parenthesis, we show the median percentage
reduction/increase per merge scenario.

at gradle because RefMerge does the worst on it. MozStum-
bler has the third lowest median number of refactorings per
scenario while antlr4 has the second highest median number
of refactorings per scenario. Projects error-prone and gradle
respectively have the 9th and 8th highest median number
of refactorings per scenario. This suggests that RefMerge is
not affected by the number of refactorings in a project.

Conflicting Lines of Code: Finally, we look at the
conflicting lines of code (LOC) in Figure 7, which measures
the total number of lines in all conflict blocks/regions of a
merge scenario. From Figure 7a, we observe similar behav-
ior of the tools as what we observed for the conflicting files
in Figure 5a. More closely from the table in Figure 7b, we
find that IntelliMerge reduces the number of conflicting
LOC in 408 scenarios (20%) by a median 51% reduction,
while it increases the conflicting LOC for 597 (30%) scenarios
by a median 169% increase. RefMerge reduces the conflict-
ing LOC in 372 scenarios (19%) by a median 21% reduction
and increases the conflicting LOC in 214 scenarios (11%) by
a median 14% increase. Note that the discrepancy between
IntelliMerge’s increased rate for conflicting regions and
conflicting LOC suggests that while IntelliMerge results
in a lot more conflicting regions than Git, the size of these
conflicting regions is small. To confirm this, we show the
distribution of the reported conflicting LOC per block (as
opposed to a whole scenario) in Figure 8. The plot confirms
that the conflict regions that IntelliMerge reports are
indeed quite small, even if they are much more frequent
than the other tools.

5.3 Summary and Interpretation of RQ1 Results
The above results indicate that RefMerge com-

pletely resolves almost twice as many merge scenarios as
IntelliMerge (122 versus 70). Of the 453 merge scenarios
with only refactoring-related conflicts, IntelliMerge and
RefMerge respectively resolve 8% and 27%.

13

0

10

20

30

Co
nf

lic
tin

g
LO

C/
Bl

oc
k

RefMerge Git IntelliMerge

Fig. 8: Conflicting lines of code per conflict block.

While IntelliMerge is able to reduce conflicting LOC
for a higher portion of scenarios than RefMerge (51%
versus 21%), this comes at a cost of a high increase in the
reported conflicts across all granularity levels for a large
portion of the merge scenarios. Furthermore, there is a large
variance in how IntelliMerge does across the projects.
We find that IntelliMerge does well on projects whose
merge scenarios have a low number of refactorings and
struggles with projects that have several refactorings per
merge scenario. Additionally, IntelliMerge times out on
a higher number of merge scenarios than RefMerge. In
our investigation into why each tool times out, we found
that merge scenarios with more changed files typically
cause both tools to time out. Thus, it seems IntelliMerge
works extremely well for merge scenarios with few changes
and a small number of refactorings, but actually makes
it much worse for other scenarios. This makes sense be-
cause IntelliMerge relies on a similarity score to detect
refactorings and a large number of changes make it harder
to detect refactorings. Overall, taking the total number of
scenarios it can completely resolve (70 from Table 3) and
the ones in which it can reduce the total number of con-
flicting LOC for (408 from Figure 7b), IntelliMerge can
help the developer deal with less conflicts in 478 scenarios
(24% of overall scenarios). However, taking both timeouts
(907 scenarios from Table 3) and worsened results in terms
of overall conflicting LOC (597 scenarios from Figure 7b),
IntelliMerge will not help the developer in the remain-
ing 1,504 (75%) scenarios, and will in fact make it worse for
them in almost a third of those.

On the other hand, RefMerge completely resolves or
reduces the number of conflicting LOC for 497 scenarios
(25% of overall scenarios). Thus, RefMerge helps the de-
veloper in around the same number of merge scenarios
as IntelliMerge but it times out or worsens the situa-
tion at a much lower rate, only 596 (30%). Additionally,
the median percentage increase for RefMerge in terms
of conflicting LOC is much lower at 14% as opposed to
169% for IntelliMerge. Thus, RefMerge makes the situ-
ation worse for the developer both in a smaller proportion
of merge scenarios and by a lower percentage increase.
Note that the number of unchanged merge scenarios for
RefMerge is also much higher than IntelliMerge, be-
cause by construction, RefMerge resorts to a regular Git
merge when there are no supported refactorings for it to
work with.

Overall, our quantitative results show that while overall
RefMerge seems to be doing better quantitatively, it is obvi-

ous that the characteristics or difficulty of a merge scenario
impact the results in some way. One tool may be able to
handle certain types of merge scenarios better than the other,
and we do not have information about the correctness of the
resolutions. This is why we perform a qualitative analysis
of these discrepancies in RQ2 to understand the strengths
and weaknesses of each tool, as well as the characteristics of
merge scenarios that cause them to fail.

RQ1 Summary: RefMerge completely resolves double the
total number of merge scenarios as IntelliMerge (122
(6%) vs 70 (3%)). Overall, IntelliMerge can help the
developer completely resolve conflicts or deal with less
conflicts, and thus improve the situation, in 478 scenarios
(24%), but at the cost of increasing conflicting LOC, thus
worsening the conflicts, in 597 (30%) scenarios. In contrast,
RefMerge improves the situation in 497 (25%) scenarios,
and worsens it in only 214 (11%) scenarios by a lower LOC
increase rate.

6 RQ2: DISCREPANCIES BETWEEN THE TOOLS

RQ1 quantitative results are valuable for determining if a
merge tool reports less conflicts. However, these numbers
do not provide us information about the quality of the
resolutions the tools provide. For example, a merge tool
could report no conflicts in a merge scenario where conflicts
should be reported. Similarly, the reported conflicts may not
be real conflicts. Thus, we perform a qualitative study for
RQ2 to dig deeper into the reported results.

6.1 Research Method
Sampling Criteria: We manually analyze a sample

of 50 merge scenarios to shed light on the strengths and
weaknesses of each tool. We randomly sample the 50 merge
scenarios across the following criteria: (1) IntelliMerge
and RefMerge produce similar results by completely re-
solving the merge scenario, or equally increasing/reducing
the number of Git conflicts. (2) IntelliMerge outperforms
RefMerge by completely resolving the scenario or report-
ing a lower number of conflicts at any granularity level and
(3) RefMerge outperforms IntelliMerge. We also try to
evenly sample across projects.

Analysis Method: Our manual analysis goal is to
analyze the conflicts reported by all three tools across the
sampled scenarios. To investigate if a merge conflict is
a true/false positive, we look at the code region in the
base commit, left commit, and right commit. We determine
whether integrating the changes from both parents should
result in a merge conflict, based on the semantics of the
changes. If a merge conflict is expected because it requires
developer intervention, we label this conflict region as a true
positive. If it should not result in a merge conflict (i.e., a tool
should be able to automatically resolve it), we label it as a
false positive. If the other merge tools do not report the same
conflict, we investigate the result of their merge and decide
if it is a true negative (i.e., conflict should not be reported)
or false negative (i.e., the other tool(s) missed the conflict).
We also investigate and categorize the reasons behind false
positives and false negatives for each tool. This process takes
an average of 63 minutes per merge scenario.

14

TABLE 4: Comparing the false positives and false negatives
reported by each tool, across the 50 sampled scenarios.

RefMerge Git IntelliMerge

Conflict Blocks Investigated 379 433 866

True Positives 191 190 159
False Positives 188 243 707
False Negatives 0 5 71

TABLE 5: The reason for each false positive and false nega-
tive reported by Git, as well as the frequency for each reason.

Git Reasons Type Frequency

No Refactoring Handling False Positive 140
Ordering Conflict False Positive 61
Formatting Conflict False Positive 41
No Refactoring Handling False Negative 5

Total 248

6.2 Results

Table 4 shows the total number of conflict blocks that we
manually analyze across the 50 sampled scenarios, as well
as the number of false positives and false negatives that we
find for each tool. As shown, Git reports 243 false positives
and 5 false negatives. IntelliMerge reports 707 false
positives and 71 false negatives. Meanwhile, RefMerge
reports 188 false positives and no false negatives. When
compared to Git, RefMerge reduces the number of false
positives by 23% and completely eliminates false negatives,
while IntelliMerge increases the number of false pos-
itives and false negatives by 192% and 1,320%. We also
show the number of true positives reported by each tool.
While Git and RefMerge report a total of 190 and 191 true
positives respectively, IntelliMerge reports only 159 true
positives.

False Positives/Negatives Git Results: Table 5 shows
the reasons behind the false positives and false negatives
for Git. There are generally three main reasons for false
positives. The most prevalent reason for Git’s false positives
is not being able to handle refactorings, and thus reporting
conflicts that could be resolved automatically. There are 140
(58%) false positive conflicts that Git reports that involve
refactorings. Given the selection of merge scenarios we use
in our evaluation, it is natural to find that many of the
conflicts Git reports are related to refactorings. Table 5 also
shows that 61 (25%) of Git’s reported false positives are due
to ordering conflicts. An ordering conflict is a conflict caused
by adding two program elements to the same location and
the merge tool not knowing which order to put them in,
when the order does not matter [12]. Consider Figure 9
where two import statements are added to the same location
in CompilationTestHelper.java. Git does not know
which order to put the new lines in, even though they
can be put in any order. Finally, the remaining 41 (17%) of
Git’s false positives are formatting conflicts that are caused by
different formatting between branches, such as additional
white space or a new line on one branch that does not exist
on the other. Figure 10 shows a formatting conflict where the
left branch does not have any space between the parameters
while the right branch added a space.

(a) Git and RefMerge Result
(b) IntelliMerge Result

Fig. 9: An ordering conflict reported by Git and RefMerge
along with the correct merge resolution by IntelliMerge
(error-prone [07559b47]).

(a) Git and RefMerge Result
(b) IntelliMerge Result

Fig. 10: A formatting conflict reported by Git and
RefMerge along with the expected merge resolution by
IntelliMerge (deeplearning4j [6c285324]).

Not being able to handle refactorings also causes
Git’s results to include false negatives caused by syntax
errors. Figure 11 presents a merge scenario where Git
results in a false positive as well as false negatives. On
the left branch, file TransmuteTabletContainer.java
is renamed to TransmutationContainer.java and
class TransmuteTabletContainer is renamed to
class TransmutationContainer. Additionally, class
TableInv (which is the type of field table on Line
3) is renamed to Inventory as part of a Rename
Class refactoring. Note that TableInv is a class in
TableInv.java, which we do not show in Figure 11 for
better visualization. To match the type update, field table
is also renamed to inventory. On the right branch, an
Add Parameter refactoring was performed on the definitions
of methods close and open in TableInv (not shown),
which resulted in the update of the function calls on Lines
6 and 12 of Figure 11c.

We can see Git’s merge result in Figure 11d
where it reports a delete/modify conflict in
TransmuteTabletContainer.java, because it
mistakenly sees that the left branch deleted the whole
file (i.e., does not see this as a renamed class) while the
right branch changed it. This is false positive conflict,
because the developer will need to deal with this reported
conflict, when a tool that considers refactoring semantics
can avoid this altogether. Note that when Git reports
a delete/modify conflict, it does not physically delete
the file because it waits for the developer’s resolution.
Git also does not try to detect conflicts on the internal
content of the file. Moreover, in Git’s resolution, it shows
the newly added file TransmutationContainer.java
as is and does not provide any context that it is related
to TransmuteTabletContainer.java. Worse, Git’s
resolution of TransmutationContainer.java contains
compilation errors, because the close() and open() calls
are missing the added parameter. This is a false negative.

https://github.com/google/error-prone/commit/07559b47674594fdf40f2855f83b492f67f9093c
https://github.com/Symbolk/deeplearning4j/commit/6c2853248afe9f0722fb2acad5551f687dc27e52

15

(a) Base commit

(b) Left parent
(c) Right parent

(d) Git Result (e) RefMerge Result

Fig. 11: The three versions (base, left, and right) of code involved in two of Git’s false negatives, as well as the results
merged by Git and RefMerge’s result (ProjectE [12b0545e]) .

Figure 11e shows RefMerge’s resolution, which
illustrates the strengths of a refactoring-aware merging
tool. We can see that no modify/delete conflict is reported
and that TransmuteTabletContainer.java is correctly
deleted. In addition, field table is renamed to inventory,
along with the rename of its type from TableInv to
Inventory. Although RefMerge does not support Add
Parameter, the added parameters are the only changes after
RefMerge inverts Rename Class and Rename Field, resulting
in the correct method calls on lines 6 and 11. We note
that in this scenario, IntelliMerge incorrectly deletes
classes TableInv and TransmuteTabletContainer
instead of renaming them. In IntelliMerge’s
result, files TransmuteTabletContainer.java,
TransmutationContainer.java, TableInv.java,
and Inventory.java do not exist, resulting in an
incorrect merge.

False positive/negative RefMerge Results: Table 6
shows the reasons behind the false positives and nega-
tives for RefMerge. Similar to Git, RefMerge also suf-
fers from being unable to resolve ordering and format-
ting conflicts, reporting the same 61 ordering conflicts
and 41 formatting false positives as Git. RefMerge re-
ports an additional 5 ordering conflicts and 16 formatting
conflicts that arise from its refactoring handling, totalling

TABLE 6: The reason and frequency for false positives and
false negatives reported by RefMerge.

RefMerge Reasons Type Frequency

Ordering Conflict False Positive 61
Formatting Conflict False Positive 41
Unsupported Refactoring False Positive 41
Refactoring-related Formatting Conflict False Positive 16
Fails to Invert Refactoring False Positive 14
IntelliJ Optimization False Positive 5
Undetected Refactoring False Positive 5
Refactoring-related Ordering Conflict False Positive 5

Total 188

66 (35%) ordering conflicts and 55 (29%) formatting con-
flicts. All of the additional ordering conflicts are caused
by move-related refactorings such as Move Inner Class
or Pull Up Method being moved to the correct class but
not being moved to the correct location within the file.
For example, Figure 12 shows a merge scenario where
RefMerge introduces a refactoring-related ordering con-
flict. In this example, the left branch changes the field
declaration ContextBuilder Type = new Type() to
ContextBuilder TYPE = null. The right branch moves
field TYPE from inner class IndexResponse.Fields
to inner class IndexResponse.DeleteResponse. This
results in Git reporting the conflict in Figure 12d be-

https://github.com/sinkillerj/ProjectE/commit/12b0545e521f798a818fc37fc2560f8c92bca9ab

16

(a) Base Commit

(b) Left Commit (c) Right Commit

(d) Git Result (e) RefMerge Result

(f) IntelliMerge Result

Fig. 12: The three versions (base, left, and right) of
code involved in a refactoring-related ordering conflict
that RefMerge introduces while along with Git’s and
IntelliMerge’s results (elasticsearch [503a166b]).

cause Git sees that the left branch made a change to
the line that the right branch deleted. When RefMerge
inverts the Move Field refactoring, it correctly moves
TYPE to IndexResponse.Fields but it moves it to the
wrong location textually, moving it to line 9 instead of
line 5. If RefMerge inverts TYPE to the correct loca-
tion, RefMerge would be able to resolve the conflict.
However, as shown in Figure 12e, VERSION and INDEX
are unnecessarily part of the conflict while they origi-
nally were not. While RefMerge complicates this conflict,
IntelliMerge resolves the conflict by moving TYPE =
null to IndexResponse.DeleteResponse, as shown in
Figure 12f.

The additional formatting conflicts are caused by for-
matting differences from inverting refactorings, also typi-
cally Move Method and Move Inner Class refactorings.
In these conflicts, RefMerge resolves the refactoring conflict
but leaves a formatting conflict that usually consists of
two lines with different amounts of white space. Figure 13
provides an example where RefMerge results in a larger

(a) Base Commit

(b) Left Commit
(c) Right Commit

(d) Git and IntelliMerge Re-
sult (e) RefMerge Result

Fig. 13: The three versions (base, left, and right) of
code involved in a refactoring-related formatting con-
flict that RefMerge introduces along with Git’s and
IntelliMerge’s results (iFixitAndroid [91932083]).

formatting conflict. In this example, the right branch makes
the same changes to method request as the left branch,
except the right branch also extracts the changes to method
parseApiCall. As shown in Figure 13d, Git reports a
conflict involving Extract Method, but this conflict has po-
tential to be resolved by RefMerge and IntelliMerge.
Figure 13e shows that RefMerge inverts the Extract Method
refactoring but has more space on each line than the right
branch. We mark the additional space on the right branch
with gray to make the spacing difference clear. The dif-
ference in spacing results in a formatting conflict twice as
large as the conflict reported by Git. It is worth noting that
whenever RefMerge inverts an Extract Method refactoring
and it cannot resolve the conflict, RefMerge usually results
in a conflict twice as large. While we typically associate
larger conflicting regions with a more difficult merge res-
olution, we believe that RefMerge’s process has its own
merits. For example, while Git and IntelliMerge report
a smaller conflicting region than RefMerge, a developer
trying to resolve the merge conflict first has to find the
extracted method, then compare the changes between the
two methods, and finally find the commit the method was
extracted from to understand what the method looked like
before the extract method refactoring. While RefMerge
doubles the size of the conflict since it has the complete
bodies of the two versions of the method (with and without
the extracted code), the changes are shown side by side so a

https://github.com/elastic/elasticsearch/commit/503a166b7148a79ac6221894eca4835ef68d3480
https://github.com/iFixit/iFixitAndroid/commit/91932083f2f73d334f5789182da8117e275dc5f8

17

TABLE 7: The reason and frequency of false positives and
false negatives reported by IntelliMerge.

IntelliMerge Reasons Type Frequency

Matching Error False Positive 646
Undetected Refactoring False Positive 37
Ordering Conflict False Positive 10
Incorrectly Detected Refactoring False Positive 6
Unsupported Refactoring False Positive 5
Formatting Conflict False Positive 3
Deletes Conflict Block False Negative 45
Matching Error False Negative 21
Incorrectly Detected Refactoring False Negative 5

Total 778

developer does not need to search for the extracted method.
Additionally, it is more clear what the method body changes
were without the extracted method’s parameters making
things less clear. Thus, RefMerge actually provides addi-
tional information about the refactorings originally involved
within the conflicting region to provide the context needed
to resolve the conflict.

In 41 (22%) of the false positives that RefMerge reports,
the underlying issue is a refactoring that is not supported in
the current implementation. For example, a merge conflict
in MinecraftForge ([f5781488]) contains an Add Parameter
refactoring and while RefMerge does resolve the conflict,
IntelliMerge does.

RefMerge reports 14 (7%) false positives involving
refactoring conflicts it supports but that it fails to resolve,
because it could not invert the refactoring. Nine of the
refactorings that RefMerge fails to invert are Rename Method
refactorings. After investigation, we found that these are
typically caused by RefMerge being unable to find the
refactored program element in IntelliJ’s AST due to technical
issues in our code, which we plan to fix.

There are five (3%) false positives caused by IntelliJ
optimizations, which are automatic optimizations done to
the code after using the refactoring engine. All five of the
IntelliJ optimizations were caused by inverting refactorings
that were not involved in the original refactoring conflicts
reported by Git. An example of this is replacing several
import statements with import package.*, which then
cause Git to detect a conflict in the merging step.

Finally, there are five (3%) false positives that are due to
undetected refactorings that RefactoringMiner did not detect.
In these scenarios, there are several methods that are similar,
both in structure and naming, which likely made it difficult
for RefactoringMiner to detect the refactoring. We reported
the issue to the RefactoringMiner developers.

False positive/negative IntelliMerge Results: Table 7
shows the reasons behind the false positives and negatives
for IntelliMerge. We start with some of the reasons
we already observed for the other tools. IntelliMerge
reports 10 (1%) false positives due to ordering conflicts
and also has 37 (5%) because of undetected refactorings.
IntelliMerge also sometimes fails to detect a refactor-
ing, most commonly with parameter-level refactorings (14),
Extract Method (9), and Rename Class (5). The unde-
tected refactorings can be split into two groups: (1) the

(a) Git and RefMerge Result
(b) IntelliMerge Result

Fig. 14: A conflict reported by IntelliMerge caused
by a matching error along with Git’s result (iFixitAndroid
[91932083]).

presence of several similar program elements drops the
correct refactored program element below the similarity
threshold, and (2) the presence of several changes to a
program element cause IntelliMerge to think that the
refactored program element is an addition. For example,
IntelliMerge missed the Extract Method refactoring in
Figure 13 that RefMerge was able to detect. In this specific
scenario, several methods had parse or ApiCall in their
name, resulting in an incorrect match. In addition, there
are 125 refactorings that were performed in class Api,
resulting in several changes that made it more difficult for
IntelliMerge to detect the refactoring.

Note that, unlike Git and RefMerge, IntelliMerge
reports only three false positives related to formatting con-
flicts. On the other hand, 646 of IntelliMerge’s false
positives (91%) are due to matching errors. We define
a matching error as an error caused by IntelliMerge’s
graph node matching process. This primarily happens with
comments, annotations, and imports where IntelliMerge
cannot find matches for these nodes and assumes they were
deleted. In Figure 14, Git does not report a merge conflict.
As seen in Figure 14b, IntelliMerge incorrectly reports
a conflict that indicates that the comment was changed on
one branch and deleted on the other. In this example, the left
branch added method getQuery along with getQuery’s
comment to class ImageSizes. The right branch does not
add any changes to class ImageSizes. While conflicts
caused by matching errors are typically small, they hap-
pen frequently and the developer needs to spend time to
investigate the conflict and decide that they can ignore it.

Six false positives are caused by IntelliMerge
incorrectly detecting a refactoring that was never
performed. There are six cases where IntelliMerge
incorrectly matches methods in different classes,
resulting in IntelliMerge incorrectly moving
a method and reporting a conflict in its method
body. In Figure 15, Git does not report a merge
conflict. As shown in Figure 15b, the developers add
method getAuthToken(String type, int len) to
AndroidAuthenticator.java. On the right branch, the
developers add method getAuthToken(String type,
bool reAuth) to AndroidAuthenticator.java. The
right branch also adds method getCurrVelocity
to class ScrollerCompat.java, not shown in
this figure. As shown in Figure 15d, both Git and
RefMerge do not report a conflict. Figure 15e shows
the result for IntelliMerge. IntelliMerge deletes

https://github.com/MinecraftForge/MinecraftForge/commit/f5781488d9da0d045cef802cf98af70e80eaa8aa
https://github.com/iFixit/iFixitAndroid/commit/91932083f2f73d334f5789182da8117e275dc5f8

18

(a) Base Commit

(b) Left Commit (c) Right Commit

(d) Git and RefMerge Result
(e) IntelliMerge Result

Fig. 15: The three versions (base, left, and right) of code
involved in a conflict reported by IntelliMerge caused
by incorrectly detecting a refactoring along with the re-
sults from Git and RefMerge (platform fmwk support
[6c371fc5]).

getCurrVelocity in ScrollerCompat.java and
replaces getAuthToken() in AndroidAuthenticator
with getCurrVelocity(). IntelliMerge reports a
conflict in getCurrVelocity with the changes added
to getCurrVelocity on the left side and the already
existing method body of method getAuthToken on the
right, resulting in a false positive.

The remaining 5 false positives are caused by unsup-
ported refactorings. Both IntelliMerge and RefMerge
do not support Extract Superclass.

IntelliMerge results in 45 (63%) false nega-
tives because it incorrectly deletes the changes made
in the left and right branches, causing it to com-
pletely delete code that should have resulted in conflict
blocks. We find that IntelliMerge frequently incor-
rectly deletes complete classes that are involved in Rename
Class or Move Class refactorings, such as when it deleted
TransmuteTabletContainer.java in the example in
Figure 11. This is likely caused by a matching error where if
IntelliMerge cannot find a match for program elements
in the base commit, it assumes these elements were deleted
and removes them accordingly. Note that this is a lower
bound for how many times IntelliMerge could have
deleted other files or program elements that were not part of
a conflict block and since we focus on the reported conflicts
by each tool, we would have missed this happening in files
where no merge tool reports a conflict. For example, there
is a merge scenario in MinecraftForge ([c3559b2d]) where
IntelliMerge deletes every file in the scenario except for

(a) Git and RefMerge Result (b) IntelliMerge Result

Fig. 16: A syntax error (Duplicate declaration) that
IntelliMerge’s merge resolution introduces versus Git’s
and RefMerge’s result (deeplearning4j [8d1ff15f]).

one, including six files that should contain conflicts.
We find that 21 (30%) of IntelliMerge’s false neg-

atives are due to matching errors that eventually lead to
syntax errors. Most of the syntax errors seem to happen
in classes that contain several method-level refactorings
and several similar method declarations. Figure 16 shows
a merge scenario where IntelliMerge results in a du-
plicate declaration syntax error while Git and RefMerge
do not. In this example, neither branch changed method
handleUpload on line 2 of FileResource.java. How-
ever, IntelliMerge’s resolution results in a syntax error
where it duplicates the method declaration on line 2.

Finally, the 5 (7%) remaining false negatives are due
to IntelliMerge detecting refactorings that were not
performed, leading to IntelliMerge moving methods
to classes that the developers never moved them to and
causing additional syntax errors. This is similar to the false
positives caused by incorrectly detected refactorings. How-
ever, in this case IntelliMerge does not report the ex-
pected conflict block. Figure 17 provides an example where
IntelliMerge misses a conflict. In this example, the left
branch and right branch add new code to the same spot in
method call. As shown in Figure 17d, Git and RefMerge
report a conflict with the conflicting region containing the
additions from each branch. This is a necessary conflict be-
cause the left branch sets user in the if statement, while the
right branch sets user before the if statement. Additionally,
method isLogged checks if mUser != null instead of
user == null. In Figure 17e, IntelliMerge incorrectly
replaces user == null with isLogged() on line 10 even
though method isLogged returns mUser != null. Thus
resulting in a different logic check than is expected and
resulting in a false negative.

6.3 Interpretation of RQ2 Results

The above results indicate that, in our sample, RefMerge
automatically resolves some of Git’s reported conflicts,
which results in less false positives than Git (188 ver-
sus 243). On the other hand, IntelliMerge almost
triples the number of false positives (707 versus 242).
While IntelliMerge reports more false positives than
Git and RefMerge, IntelliMerge does well with or-
dering and formatting conflicts due to its graph-based
approach. IntelliMerge also decreases the number of
refactoring conflicts a developer needs to deal with, but
this comes at the price of many more false positives:
646 of IntelliMerge’s false positives are matching er-
rors which are typically small in size. This explains the
quantitative results of RQ1 where IntelliMerge reports
more conflicts but less conflicting LOC. Additionally, while

https://github.com/aosp-mirror/platform_frameworks_support/commit/6c371fc5da43c7841549d0b7573831ca7dd1ca9f
https://github.com/MinecraftForge/MinecraftForge/commit/c3559b2dbdc6462f496d606e25bf081920b181f9
https://github.com/Symbolk/deeplearning4j/commit/8d1ff15ffcdbf5901db43226a082d5d86f617e15

19

(a) Base commit

(b) Left parent (c) Right parent

(d) Git and RefMerge Result (e) IntelliMerge Result

Fig. 17: The three versions (base, left, and right) of code in-
volved in a necessary conflict that Git and RefMerge report
and IntelliMerge misses due to incorrectly detecting a
refactoring (iFixitAndroid [91932083]).

IntelliMerge does not detect refactorings in 37 con-
flict blocks reported by Git (struggling most with pa-
rameter level refactorings), IntelliMerge typically does
well with the refactoring conflicts it does detect. However,
IntelliMerge also incorrectly detects 11 refactorings (six
false positives and five false negatives from Table 7) and
reports a total of 71 false negatives. Thus, while the results
of RQ1 show that IntelliMerge works well for a small
proportion of scenarios where it is able to highly reduce
the resulting conflicts in a scenario, our qualitative results
suggest that some of these may actually be false negatives.

On the other hand, RefMerge does not miss any con-
flicts that need to be reported (i.e., completely eliminates
false negatives) and reduces the number of false positives
reported by 23%, when compared to Git. RefMerge wors-
ens the situation at a much lower rate than IntelliMerge,
reporting 26 false positives that were not reported by Git,
where 16 of these are formatting conflicts that are typically
introduced after resolving a refactoring conflict. In general,
RefMerge struggles most with move-related refactorings
where it introduces ordering conflicts.

RQ2 Summary: Compared to Git, RefMerge re-
duces the number of false positives by 23% and com-
pletely eliminates false negatives while IntelliMerge in-
creases them by 192% and 1,320% respectively. RefMerge
struggles most with move-related refactorings whereas
IntelliMerge struggles most with parameter-level and
class-level refactorings.

7 DISCUSSION

In our study, we compared two refactoring-aware merging
approaches that have not been compared before. RQ1
results show that RefMerge manages to resolve about twice
as many conflicting merge scenarios as IntelliMerge. We
found that while IntelliMerge reduced the number of
conflicting LOC in more scenarios compared to RefMerge,
IntelliMerge also increased the number of conflicting
LOC in more scenarios. On the other hand, RefMerge
makes the situation worse in a smaller proportion of merge
scenarios and by a lower percentage increase. Addition-
ally, our qualitative analysis shows that IntelliMerge
reported a much higher number of false positives and false
negatives whereas RefMerge reduced the number of re-
ported false positives and completely eliminated false nega-
tives in the sampled 50 merge scenarios. Thus, operation-
based refactoring-aware merging shows promise to help
improve the developers’ experience without the risk of
increasing the number of false negatives.

Strengths and Weaknesses of IntelliMerge: The
nature of IntelliMerge’s graph-based approach makes
it avoid formatting and ordering conflicts. However,
IntelliMerge seems to struggle with correctly matching
graph nodes across the two versions of the code. We be-
lieve that IntelliMerge’s use of a similarity score for its
refactoring detection is one of the main reasons for this.
IntelliMerge often failed to detect a refactoring because
the refactored program element was too similar to other
existing program elements. We also found cases where a
non-refactoring change caused a program element to be
within the similarity threshold of other program elements,
causing IntelliMerge to treat it as a refactoring. Al-
though IntelliMerge could potentially change the used
similarity threshold, the use of a similarity score will always
run into these problems [23]. Additionally, we found that
IntelliMerge generally struggles with Rename Class and
Move Class refactorings. When class-level refactorings are
performed, IntelliMerge frequently deletes the entire
related class. However, IntelliMerge seemed to do well
with the other refactorings it detected.

Strengths and Weaknesses of RefMerge: Whereas
IntelliMerge’s graph-based approach makes it avoid
formatting and ordering conflicts, RefMerge’s operation-
based approach is more prone to such conflicts. While
formatting conflicts are a small price to pay considering
they are typically easier to resolve than refactoring conflicts,
move-related refactorings proved to be conceptually chal-
lenging when it comes to undoing/redoing them. Although
RefMerge can move the program element to the correct
class, it cannot guarantee that it is moved to the same textual
location it was previously at. Despite this, RefMerge

https://github.com/iFixit/iFixitAndroid/commit/91932083f2f73d334f5789182da8117e275dc5f8

20

resolves or simplifies more refactoring-related conflicts than
the complications it introduces, all while avoiding syntax
errors. Additionally, while the number of refactorings in
a merge scenario can cause problems for IntelliMerge,
RefMerge is resilient to the number of refactorings in a
given scenario.

Moving Forward: Driven by these findings, we
propose a few paths moving forward in refactoring-
aware merging. We believe that improvements in graph-
based refactoring-aware merging requires addressing the
matching algorithm. The current merging algorithm
IntelliMerge uses seems to work well, but the initial
matching phase can be improved by avoiding the similarity
score matching and instead using a refactoring detection
algorithm such as that used in RefactoringMiner [23].

We believe that RefMerge showed very promising
results, despite supporting a subset of the refactorings
IntelliMerge supports. Future work could go in three
different directions: (1) adding support for more refactoring
types, (2) undertaking a user study with practitioners to
determine if RefMerge’s merge resolutions, even if partially
resolved, help practitioners, and (3) using language se-
mantics to address ordering-related conflicts when possible,
such as the approach proposed by Apel et al. [12].

Finally, it could make sense to combine the two
refactoring-aware approaches in some way similar to how
changing strategies/auto-tuning between semi-structured
and structured merge was previously proposed [19]. As the
nature of graph-based merging seems to do well with order-
ing conflicts and formatting conflicts, this would address the
weaknesses of operation-based merging. However, address-
ing the weaknesses caused by IntelliMerge’s matching
algorithm would need to happen before this path could be
considered further.

8 THREATS TO VALIDITY

We explain the potential threats to the validity of our results.
Construct Validity: In our qualitative analysis, we

manually compare the results of the three tools to identify
false positives and false negatives. This means we may miss
false negatives that all three tools fail to report. Additionally,
the analysis was done by a single author and is thus subject
to their understanding of the scenario. To alleviate this as
much as possible, we compare the changes in the left parent,
right parent, and base commit for each merge scenario to
first try to understand the developer’s intentions and the
expected merge result. We record a detailed description of
our interpretation of the scenario and conflicts and share this
in our artifact to allow further external validation. Further
analysis involving investigating run time and compile time
errors could also further shed further light on false negatives
reported by the three approaches.

Internal Validity: Any problems inherited from the
tools used in RefMerge or in our evaluation setup may
lead to inaccuracies in the results. To mitigate this, we
carefully consider the role of each tool used in our study and
analyze its results through manual verification. While not
a bug with IntelliJ per se, our qualitative analysis showed
that IntelliJ’s refactoring engine, which we use to invert
and replay refactorings, performs optimizations that lead to

unnecessary merge conflicts. This means that the reported
number of conflicts in our results is an upper bound and
with engineering effort and help from the IntelliJ developers
to allow us to disable these optimizations, these limitations
can be mitigated. Alternatively, a different refactoring en-
gine that does not force these optimizations can be used.
Any refactoring that RefactoringMiner misses will not be in-
verted and replayed, which will result in the same merge as
Git. Any refactorings that RefactoringMiner detects which
were not performed will result in RefMerge inverting and
replaying a ”fake” refactoring, which may lead to unnec-
essary merge conflicts. During our development, we came
across some such occurrences and the RefactoringMiner
author fixed these in the tool. In our qualitative analysis,
we came across three refactorings that RefactoringMiner did
not detect, which we recently reported. Overall, Refactor-
ingMiner achieves a precision of 98% and 87% recall [25]. In
general, it is important for RefMerge to rely on a tool with
high precision to ensure we do not result in unnecessary
conflicts. A lower recall simply means RefMerge will result
in the same resolution as Git.

Supporting additional refactorings requires additional
engineering effort. In this paper, we focused on creating a
first implementation of operation-based refactoring-aware
merging that allows us to perform a thorough evaluation of
the the concept. As discussed in Section 3.6, RefMerge sup-
ports the same 13 refactorings that IntelliMerge reports
supporting in its paper as well as an additional 4 out of 8
we found in its implementation. To alleviate any potential
issues with supporting only 17/21 refactorings, we manu-
ally verified the correctness of each merge tool’s resulting
merge and investigated the reason for each reported merge
conflict (RQ2).

We carefully considered how each pair of refactor-
ings interact with each other and can result in a merge
conflict. We describe the conflict logic for each refactoring
pair in our artifact [26]. Any oversights or mistakes we
could have made in determining these interactions would
have appeared in our results, especially during the manual
evaluation. As per our results in RQ2, we did not find any
false positives or false negatives that are due to incorrect
conflict detection logic.

Finally, inverting and replaying refactorings in the
wrong order could result in adverse effects. Specifically,
refactorings that create a new program element (such as Ex-
tract Method) need to be applied before refactorings related
to the new program element can be performed. Performing
refactorings in an incorrect order will result in RefMerge
being unable to correctly invert and replay refactorings,
resulting in the same merge as Git. We took this into account
when determining the ordering for inverting and replaying
refactorings (see Section 3.1). If we relied on a refactoring
order that is incorrect, we would have seen RefMerge result
in more conflicts caused by refactorings failing to invert.
While we did see some refactorings that failed to invert, this
is due to technical issues in RefMerge caused by bugs that
we plan to fix, rather than the refactoring order.

External Validity: By selecting sample projects with
different sizes and refactoring histories, we try our best to
have a representative evaluation. Our evaluation is limited
to Java open-source projects since both tools are Java spe-

21

cific. That said, while our implementation of RefMerge is
Java specific, an operation-based approach does not need to
be. Our qualitative analysis is based only on a sample of 50
merge scenarios due to the time consuming nature of the
process (avg. 63min/scenario). However, the 50 merge sce-
narios we investigated have more than 1,000 unique merge
conflicts. As far as we are aware, this is the most extensive
qualitative analysis performed in terms of unique merge
conflicts [18], [19], [22]. Naturally, investigating additional
merge scenarios could reveal more for each tool.

9 RELATED WORK

Software Merging: The proposed software merging
techniques in the literature can generally be categorized
into unstructured, structured, and semi-structured merging
techniques [27].

Unstructured merging techniques represent any software
artifact as a sequence of text lines [10]. This gives un-
structured merging techniques the strength of being able to
process all textual artifacts, regardless of the programming
language [27]. The downside to this technique is that un-
structured merging cannot handle multiple changes to the
same lines, since it cannot consider the syntactic and seman-
tic meaning in software artifacts [12]. Due to its simplicity
and versatility, modern version-control systems such as Git
or mercurial still rely on such unstructured merging.

Structured merging tries to alleviate the problems of un-
structured tools by leveraging the underlying structure of
software artifacts, typically through operating on an Ab-
stract Syntax Tree (AST) instead of textual lines [17]. Con-
sidering the structure of software artifacts allows structured
merging techniques to handle syntactic and semantic con-
flicts [29], [30], [31]. This comes at the cost of generally being
language specific and being too expensive to be used in
practice. JDime is a structured merge tool that is capable of
tuning the merging process by switching between unstruc-
tured merge and structured merge [19]. Zhu et al. [21] built
on top of JDime by matching nodes based on an adjustable
quality function. Leßenich et al. [20] proposed auto-tuning,
an approach that switches between structured and unstruc-
tured merging, and implemented JDime to demonstrate
their approach. Seibt et al. [22] recently performed a large-
scale empirical study with unstructured, semi-structured,
and structured merge algorithms and their findings suggest
that combined strategies are promising moving forward.

Semi-structured techniques aim to create a middle ground
by considering both the language independence of unstruc-
tured merging and the precision of structured merging [12].
FSTMerge was proposed by Apel et al. [12] as one of the
first semi-structured merging approaches. While FSTMerge
reduces the number of merge conflicts reported compared to
unstructured merge, FSTMerge struggles with renamings.
Cavalcanti et al. [18] proposed jFSTMerge, building upon
FSTMerge by adding handlers for different types of con-
flicts such as renaming.

By representing software artifacts partly as text and
partly as trees, semi-structured merging achieves a cer-
tain level of language-independence. Cavalcanti et al. [32]
performed an empirical study to compare unstructured
and semi-structured merging techniques. They found that

semi-structured merge can reduce the number of merge
conflicts by half. We compare only against IntelliMerge
because in their paper, they show that they outperform
jFSTMerge [15]. Furthermore, we are focusing on tech-
niques that specifically target refactorings in order to com-
pare their strengths and weaknesses.

Proactive Conflict Detection & Prevention: The key
idea behind this research line is that detecting conflicts as
soon as they happen, even before a developer commits the
changes, can lead to conflicts that are easier to resolve.
Knowing what changes other developers are making is
beneficial for team productivity and reducing the num-
ber of reported merge conflicts [33]. One such approach
is speculative merging [34], [35], where all combinations of
available branches are pulled and merged in the back-
ground. Owhadi-Kareshk et al. [36] designed a classifier
for predicting merge conflicts with the aim of reducing the
computational costs of speculative merging by filtering out
merge scenarios that are unlikely to be conflicting.

Syde [37] and Palantir [38] are two tools that in-
crease developer awareness by illustrating the code changes
their team members are making. Cassandra [39] mini-
mizes simultaneous edits to the same file by optimizing
task scheduling. ConE [40] is an approach that proactively
detects concurrent edits to help mitigate certain resulting
problems, including merge conflicts. Dewan et al. propose
CollabVS, a semi-synchronous detection and resolution tool
that detects a potential conflict when a user starts editing
a program element that has a dependency on another pro-
gram element that has been edited but not committed by
another developer [41]. Silva et al. [42] proposed utilizing
automated unit test creation to detect semantic conflicts that
a merge tool could have missed. Fan et al. [43] proposed
using dependency-based automatic locking to support fine-
grained locking and avoid semantic conflicts. DeepMerge
is a recent effort that defines merge conflict resolution as
a machine learning problem [44]. The approach primarily
leverages the fact that around 80% of merge conflict resolu-
tion only rearrange lines [45]. However, they do not explic-
itly consider refactoring semantics in their merge conflict
resolution.

Refactoring Detection: Refactoring is a widespread
practice that enables developers to improve the maintain-
ability and readability of their code [46]. Refactoring has
been extensively studied over the past few decades [47],
with recent work focusing on the detection of refactor-
ing changes and the relationship between refactorings and
code quality [48], [49], [50], [51]. Multiple tools have been
developed to detect different refactoring types, such as
Ref-Finder [52] and RefDistiller [53]. We use the
state-of-the-art refactoring detection tool, RefactoringMiner,
which achieves a precision of 98% and a recall of 87% [25].

Operation-based & Refactoring-aware Merging:
Operation-based merging is a semi-structured merging tech-
nique that models changes between versions as operations
or transformations [54], [55], [56] which could be used
to support refactoring-aware merging [16]. Nishimura et
al. [57] proposed a tool that reduces the manual effort nec-
essary to resolve merge conflicts by replaying fine-grained
code changes related to conflicting class members. Their
approach only considers edits and has problems with long

22

edit histories and finer granularity of operations [16].
Similar to MolhadoRef, Ekman and Asklund [58]

present a refactoring-aware versioning system. Their ap-
proach is more lightweight since it keeps the program
elements and their IDs in volatile memory, thus allowing
for a short-lived history of refactored program entities.
However, their approach has only implemented rename-
and move-refactorings. Thus, it remains to be seen whether
the approach is generic enough for other refactorings. Ad-
ditionally, RefMerge does not rely on short-lived history
because it detects refactorings at any point in the life time
of branches from the common ancestor until the merging
point.

Dig et al. [16] proposed MolhadRef, an operation-based
refactoring-aware merging algorithm that treats refactor-
ings as operations and considers their semantics, and
Shen et al. [15] proposed IntelliMerge, a graph-based
refactoring-aware algorithm. Since we discuss these two
approaches in detail in the paper and in our empirical
comparison, we do not discuss them again here.

10 CONCLUSION

In modern software development, version control systems
play a crucial role in enabling developers to collaborate on
large projects. Most modern version control systems use un-
structured merging techniques that do not understand code-
change semantics. In this paper, we rejuvenate operation-
based refactoring-aware merging [16] with the hope that
this invigorates a fruitful line of research that has a large
potential for practical impact. We design and implement the
first Git-based refactoring-aware merging implementation
in RefMerge. We add support for 17 refactoring types,
including Extract Method and Inline Method which were
argued to be a limitation for operation-based merging [15].
We perform the first large-scale empirical evaluation of
operation-based refactoring-aware merging, implemented
in RefMerge, and compare it to IntelliMerge, a graph-
based refactoring-aware merging technique [15]. Our evalu-
ation on 2,001 merge scenarios from 20 open-source projects
sheds light on the strengths and weaknesses of each ap-
proach. We find that RefMerge is able to completely
resolve or reduce the number of conflicts in more scenarios
than IntelliMerge without creating as much extra work
for the developers.

REFERENCES

[1] C. Bird and T. Zimmermann, “Assessing the value of branches
with what-if analysis,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 45:1–45:11.
[Online]. Available: http://doi.acm.org/10.1145/2393596.2393648

[2] S. Phillips, J. Sillito, and R. Walker, “Branching and merging:
An investigation into current version control practices,” in
Proceedings of the 4th International Workshop on Cooperative and
Human Aspects of Software Engineering, ser. CHASE ’11. New
York, NY, USA: ACM, 2011, pp. 9–15. [Online]. Available:
http://doi.acm.org/10.1145/1984642.1984645

[3] M. M. Rahman and C. K. Roy, “An insight into the
pull requests of github,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, ser. MSR 2014. New
York, NY, USA: Association for Computing Machinery, 2014,
p. 364–367. [Online]. Available: https://doi-org.login.ezproxy.
library.ualberta.ca/10.1145/2597073.2597121

[4] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimiza-
tion through optimized task scheduling,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13. IEEE
Press, 2013, p. 732–741.

[5] M. Ahmed-Nacer, P. Urso, and F. Charoy, “Evaluating
Software Merge Quality,” in 18th International Conference on
Evaluation and Assessment in Software Engineering. London,
United Kingdom: ACM, May 2014, p. 9. [Online]. Available:
https://hal.inria.fr/hal-00957168

[6] S. McKee, N. Nelson, A. Sarma, and D. Dig, “Software practitioner
perspectives on merge conflicts and resolutions,” in IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2017, pp. 467–478.

[7] [Online]. Available: https://github.com/
[8] [Online]. Available: https://www.mercurial-scm.org/
[9] [Online]. Available: https://subversion.apache.org/
[10] B. Berliner et al., “Cvs ii: Parallelizing software development,” in

Proceedings of the USENIX Winter 1990 Technical Conference, vol. 341,
1990, p. 352.

[11] M. Mahmoudi and S. Nadi, “The android update problem: An
empirical study,” in Proceedings of the 15th International Conference
on Mining Software Repositories, ser. MSR ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 220–230.
[Online]. Available: https://doi.org/10.1145/3196398.3196434

[12] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner,
“Semistructured merge: Rethinking merge in revision control
systems,” in Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering,
ser. ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 190–200.
[Online]. Available: http://doi.acm.org/10.1145/2025113.2025141

[13] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

[14] M. Mahmoudi, S. Nadi, and N. Tsantalis, “Are refactorings to
blame? an empirical study of refactorings in merge conflicts,” in
Proc. of the 26th IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER ’19), 2019.

[15] B. Shen, W. Zhang, H. Zhao, G. Liang, Z. Jin, and Q. Wang,
“Intellimerge: A refactoring-aware software merging technique,”
Proc. ACM Program. Lang., vol. 3, no. OOPSLA, pp. 170:1–
170:28, Oct. 2019. [Online]. Available: http://doi.acm.org/10.
1145/3360596

[16] D. Dig, T. N. Nguyen, K. Manzoor, and R. Johnson, “Molhadoref:
A refactoring-aware software configuration management tool,”
in Companion to the 21st ACM SIGPLAN Symposium on
Object-Oriented Programming Systems, Languages, and Applications,
ser. OOPSLA ’06. New York, NY, USA: Association for
Computing Machinery, 2006, p. 732–733. [Online]. Available:
https://doi.org/10.1145/1176617.1176698

[17] S. Apel, O. Leßenich, and C. Lengauer, “Structured merge with
auto-tuning: balancing precision and performance,” in Proceedings
of the 27th IEEE/ACM International Conference on Automated Software
Engineering, 2012, pp. 120–129.

[18] G. Cavalcanti, P. Borba, and P. Accioly, “Evaluating and
improving semistructured merge,” Proc. ACM Program. Lang.,
vol. 1, no. OOPSLA, pp. 59:1–59:27, Oct. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3133883

[19] S. Apel, O. Leßenich, and C. Lengauer, “Structured merge with
auto-tuning: balancing precision and performance,” in 2012 Pro-
ceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, 2012, pp. 120–129.

[20] O. Leßenich, S. Apel, and C. Lengauer, “Balancing precision and
performance in structured merge,” Automated Software Engineering,
vol. 22, no. 3, pp. 367–397, 2015.

[21] F. Zhu, F. He, and Q. Yu, “Enhancing precision of structured merge
by proper tree matching,” in Proceedings of the 41st International
Conference on Software Engineering: Companion Proceedings, ser.
ICSE ’19. IEEE Press, 2019, p. 286–287. [Online]. Available:
https://doi.org/10.1109/ICSE-Companion.2019.00117

[22] G. Seibt, F. Heck, G. Cavalcanti, P. Borba, and S. Apel, “Leveraging
structure in software merge: An empirical study,” IEEE Transac-
tions on Software Engineering, pp. 1–1, 2021.

[23] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian,
and D. Dig, “Accurate and efficient refactoring detection
in commit history,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York,
NY, USA: ACM, 2018, pp. 483–494. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180206

http://doi.acm.org/10.1145/2393596.2393648
http://doi.acm.org/10.1145/1984642.1984645
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/2597073.2597121
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/2597073.2597121
https://hal.inria.fr/hal-00957168
https://github.com/
https://www.mercurial-scm.org/
https://subversion.apache.org/
https://doi.org/10.1145/3196398.3196434
http://doi.acm.org/10.1145/2025113.2025141
http://doi.acm.org/10.1145/3360596
http://doi.acm.org/10.1145/3360596
https://doi.org/10.1145/1176617.1176698
http://doi.acm.org/10.1145/3133883
https://doi.org/10.1109/ICSE-Companion.2019.00117
http://doi.acm.org/10.1145/3180155.3180206

23

[24] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do
centralized and distributed version control systems impact soft-
ware changes?” in Proceedings of the 36th International Conference on
Software Engineering, 2014, pp. 322–333.

[25] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” IEEE
Transactions on Software Engineering, 2020.

[26] [Online]. Available: https://github.com/ualberta-smr/
RefactoringAwareMerging

[27] T. Mens, “A state-of-the-art survey on software merging,” IEEE
Trans. Softw. Eng., vol. 28, no. 5, pp. 449–462, May 2002. [Online].
Available: https://doi.org/10.1109/TSE.2002.1000449

[28] [Online]. Available: https://github.com/Symbolk/IntelliMerge
[29] D. Jackson, D. A. Ladd et al., “Semantic diff: A tool for summa-

rizing the effects of modifications.” in ICSM, vol. 94, 1994, pp.
243–252.

[30] F. Zhu and F. He, “Conflict resolution for structured merge via
version space algebra,” Proceedings of the ACM on Programming
Languages, vol. 2, no. OOPSLA, pp. 1–25, 2018.

[31] O. Leßenich, S. Apel, C. Kästner, G. Seibt, and J. Siegmund, “Re-
naming and shifted code in structured merging: Looking ahead for
precision and performance,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2017, pp. 543–
553.

[32] G. Cavalcanti, P. Accioly, and P. Borba, “Assessing semistructured
merge in version control systems: A replicated experiment,” in
2015 ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM), 2015, pp. 1–10.

[33] H. C. Estler, M. Nordio, C. A. Furia, and B. Meyer, “Awareness
and merge conflicts in distributed software development,” in 2014
IEEE 9th International Conference on Global Software Engineering.
IEEE, 2014, pp. 26–35.

[34] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive
detection of collaboration conflicts,” in Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ser. ESEC/FSE ’11. New
York, NY, USA: ACM, 2011, pp. 168–178. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025139

[35] M. Guimarães and A. Silva, “Improving early detection of soft-
ware merge conflicts,” Proceedings - International Conference on
Software Engineering, pp. 342–352, 06 2012.

[36] M. Owhadi-Kareshk, S. Nadi, and J. Rubin, “Predicting merge con-
flicts in collaborative software development,” in 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), 2019, pp. 1–11.

[37] L. Hattori and M. Lanza, “Syde: A tool for collaborative software
development,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 2, 2010, pp. 235–238.

[38] A. Sarma, D. F. Redmiles, and A. Van Der Hoek, “Palantir: Early
detection of development conflicts arising from parallel code
changes,” IEEE Transactions on Software Engineering, vol. 38, no. 4,
pp. 889–908, 2011.

[39] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimiza-
tion through optimized task scheduling,” in 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 732–741.

[40] C. Maddila, N. Nagappan, C. Bird, G. Gousios, and A. van
Deursen, “Cone: A concurrent edit detection tool for large-scale
software development,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 31, no. 2, pp. 1–26, 2021.

[41] P. Dewan and R. Hegde, “Semi-synchronous conflict detection and
resolution in asynchronous software development.” 01 2007, pp.
159–178.

[42] L. da Silva, P. Borba, W. Mahmood, T. Berger, and J. Moisakis,
“Detecting semantic conflicts via automated behavior change de-
tection,” 09 2020, pp. 174–184.

[43] H. Fan and C. Sun, “Dependency-based automatic locking for
semantic conflict prevention in real-time collaborative program-
ming,” in Proceedings of the 27th Annual ACM Symposium on Applied
Computing, 2012, pp. 737–742.

[44] E. Dinella, T. Mytkowicz, A. Svyatkovskiy, C. Bird, M. Naik, and
S. K. Lahiri, “Deepmerge: Learning to merge programs,” arXiv
preprint arXiv:2105.07569, 2021.

[45] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: The contributor’s perspec-
tive,” in 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), 2016, pp. 285–296.

[46] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor?
confessions of github contributors,” in Proceedings of the 2016

24th acm sigsoft international symposium on foundations of software
engineering, 2016, pp. 858–870.

[47] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE
Transactions on software engineering, vol. 30, no. 2, pp. 126–139, 2004.

[48] E. Choi, K. Fujiwara, N. Yoshida, and S. Hayashi, “A survey of
refactoring detection techniques based on change history analy-
sis,” arXiv preprint arXiv:1808.02320, 2018.

[49] F. Palomba, A. Zaidman, R. Oliveto, and A. De Lucia, “An ex-
ploratory study on the relationship between changes and refactor-
ing,” in 2017 IEEE/ACM 25th International Conference on Program
Comprehension (ICPC), 2017, pp. 176–185.

[50] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba,
“An experimental investigation on the innate relationship between
quality and refactoring,” Journal of Systems and Software, vol. 107,
pp. 1–14, 2015.

[51] O. Chaparro, G. Bavota, A. Marcus, and M. D. Penta, “On the
impact of refactoring operations on code quality metrics,” in 2014
IEEE International Conference on Software Maintenance and Evolution,
2014, pp. 456–460.

[52] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-finder: a
refactoring reconstruction tool based on logic query templates,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, 2010, pp. 371–372.

[53] E. L. Alves, M. Song, and M. Kim, “Refdistiller: A refactoring
aware code review tool for inspecting manual refactoring edits,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2014, pp. 751–754.

[54] W. K. Edwards, “Flexible conflict detection and management in
collaborative applications,” in Proceedings of the 10th Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’97.
New York, NY, USA: Association for Computing Machinery, 1997,
p. 139–148. [Online]. Available: https://doi.org/10.1145/263407.
263533

[55] A. Lie, R. Conradi, T. M. Didriksen, and E.-A. Karlsson,
“Change oriented versioning in a software engineering database,”
in Proceedings of the 2nd International Workshop on Software
Configuration Management, ser. SCM ’89. New York, NY, USA:
Association for Computing Machinery, 1989, p. 56–65. [Online].
Available: https://doi.org/10.1145/72910.73348

[56] E. Lippe and N. Van Oosterom, “Operation-based merging,” in
Proceedings of the fifth ACM SIGSOFT symposium on Software devel-
opment environments, 1992, pp. 78–87.

[57] Y. Nishimura and K. Maruyama, “Supporting merge conflict reso-
lution by using fine-grained code change history,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, 2016, pp. 661–664.

[58] T. Ekman and U. Asklund, “Refactoring-aware versioning in
eclipse,” Electronic Notes in Theoretical Computer Science, vol. 107,
pp. 57–69, 2004.

Max Ellis received his B.Sc. de-
gree in computer science from Washington State University,
Vancouver, WA, USA, in 2019, and the M.Sc. degree in
computer science from the University of Alberta, Canada,
in 2022, where he focused on revitalizing refactoring-aware
operation-based software merging. Presently, Max is a soft-
ware engineer at Act-on Software. His research interests
include refactoring, software merging, and software main-
tenance.

https://github.com/ualberta-smr/RefactoringAwareMerging
https://github.com/ualberta-smr/RefactoringAwareMerging
https://doi.org/10.1109/TSE.2002.1000449
https://github.com/Symbolk/IntelliMerge
http://doi.acm.org/10.1145/2025113.2025139
https://doi.org/10.1145/263407.263533
https://doi.org/10.1145/263407.263533
https://doi.org/10.1145/72910.73348

24

Sarah Nadi is an Associate Pro-
fessor in the Department of Computing Science at the Uni-
versity of Alberta, and a Tier II Canada Research Chair in
Software Reuse. She obtained her Master’s (2010) and PhD
(2014) degrees from the University of Waterloo in Canada.
Before joining the University of Alberta in 2016, she spent
approximately two years as a post-doctoral researcher at
the Technische Universität Darmstadt in Germany. Sarah’s
research provides automated support tools that help soft-
ware developers accomplish their tasks more efficiently.
She has a long line of work on supporting variability and
reuse practices. Her recent work focuses on supporting
developers as they use software libraries, including the
initial selection process, correctly using the library’s API,
and potential migration to newer alternative libraries. Sarah
leads the Software Maintenance and Reuse (SMR) lab at the
University of Alberta. For more information about the work
we do at SMR, please visit https://sarahnadi.org/smr/.

Danny Dig is an associate professor of
computer science at the University of Colorado, and an ad-
junct professor at University of Illinois and Oregon State. He
enjoys doing research in Software Engineering, with a focus
on interactive program transformations that improve pro-
grammer productivity and software quality. He successfully
pioneered interactive program transformations by opening
the field of refactoring in cutting-edge domains including
AI/ML, mobile, concurrency and parallelism, component-
based, testing, and end-user programming. He earned his
Ph.D. from the University of Illinois at Urbana-Champaign
where his research won the best Ph.D. dissertation award,
and the First Prize at the ACM Student Research Competi-
tion Grand Finals. He did a postdoc at MIT.
He (co-)authored 60+ journal and conference papers that
appeared in top places in SE/PL. His group’s research
was recognized with 9 paper awards at the flagship and
top conferences in SE and 3 winners of the ACM Stu-
dent Research Competition. He received the NSF CAREER
award, the Google Faculty Research Award (twice), and the
Microsoft Software Engineering Innovation Award (twice).
His research group released dozens of software systems,
among them the world’s first open-source refactoring tool.
Some of the techniques they developed are shipping with
the official release of the popular Eclipse, NetBeans, Visual
Studio, Android Studio development environments and are
used daily by millions of software developers. He is grateful
for research funding from NSF, Boeing, IBM, Intel, Google,
Microsoft, NEC, and Trimble.

	Introduction
	Background and Motivating Example
	Software Merging in Git
	Motivating Example

	RefMerge: Refactoring-aware Operation-based Merging
	Step 1: Detect and Simplify Refactorings
	Step 2: Invert Refactorings
	Step 3: Merge
	Step 4: Detect Refactoring Conflicts
	Detecting Conflicts
	Detecting Commutative Relationships

	Step 5: Replay Refactorings
	Current Implementation

	Evaluation Setup
	Project & Merge Scenario Selection
	Reproducing IntelliMerge
	Tool Comparison Setup
	Used Metrics and Analysis Methods

	RQ1: Quantitative Tool Comparison
	Completely Resolved Merge Scenarios
	Merge Scenarios with Differences in Conflicts
	Summary and Interpretation of RQ1 Results

	RQ2: Discrepancies between the tools
	Research Method
	Results
	Interpretation of RQ2 Results

	Discussion
	Threats to Validity
	Related Work
	Conclusion
	References

