
Inferring and Applying Type Changes
Ameya Ketkar∗

Uber Technologies Inc.
USA

ketkara@uber.com

Oleg Smirnov
JetBrains Research

St Petersburg University
Russia

oleg.smirnov@jetbrains.com

Nikolaos Tsantalis
Concordia University

Canada
nikolaos.tsantalis@concordia.ca

Danny Dig
University of Colorado Boulder

USA
danny.dig@colorado.edu

Timofey Bryksin
JetBrains Research
HSE University

Russia
timofey.bryksin@jetbrains.com

ABSTRACT

Developers frequently change the type of a program element and
update all its references to increase performance, security, or main-
tainability. Manually performing type changes is tedious, error-
prone, and it overwhelms developers. Researchers and tool builders
have proposed advanced techniques to assist developers when per-
forming type changes. A major obstacle in using these techniques
is that the developer has to manually encode rules for defining the
type changes. Handcrafting such rules is difficult and often involves
multiple trial-error iterations. Given that open-source repositories
contain many examples of type-changes, if we could infer the adap-
tations, we would eliminate the burden on developers. We introduce
TC-Infer, a novel technique that infers rewrite rules that capture
the required adaptations from the version histories of open source
projects. We then use these rules (expressed in the Comby language)
as input to existing type change tools. To evaluate the effective-
ness of TC-Infer, we use it to infer 4,931 rules for 605 popular
type changes in a corpus of 400K commits. Our results show that
TC-Infer deduced rewrite rules for 93% of the most popular type
change patterns. Our results also show that the rewrite rules pro-
duced by TC-Infer are highly effective at applying type changes
(99.2% precision and 93.4% recall). To advance the existing tooling
we released IntelliTC, an interactive and configurable refactoring
plugin for IntelliJ IDEA to perform type changes.

KEYWORDS

Refactoring, source code mining, type change, type migration

ACM Reference Format:

Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Tim-
ofey Bryksin. 2022. Inferring and Applying Type Changes. In 44th Inter-
national Conference on Software Engineering (ICSE ’22), May 21–29, 2022,

∗Ameya Ketkar performed this work as part of his PhD at Oregon State University.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510115

Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3510003.3510115

1 INTRODUCTION

As programs evolve, the types of program elements are changed
for several reasons, such as improving performance [13–15] (e.g.,
String→StringBuilder), maintainability [9] (e.g., String→Path), in-
troducing concurrency [10] (e.g., HashMap→ConcurrentHashMap), han-
dling deprecation or performing library migration [1, 29, 55] (e.g.,
org.apache.commons.logging.Log→org.slf4j.Logger). Such a refactor-
ing where the type of a program element (i.e., variable, field, or
method) is updated, and then type constraints of the new type are
propagated to the code base by adapting the code referring to this
element, is called a type change.

Despite that developers perform type changes more fre-
quently [31] than popular refactorings such as rename, tool support
for type changes is negligible compared to refactoring automation.
Developers predominantly perform type changes by hand [31]. This
can be tedious, error-prone and it can easily overwhelm the devel-
opers. Researchers [5, 22, 30, 36, 41, 54, 58, 59] and tool builders
[2, 16, 28, 43] have proposed techniques that assist developers in
performing these type changes.

The Achilles heel of these techniques is that the user has to
manually encode the syntactic transformations required to per-
form the desired type changes. While these techniques allow the
transformations to be expressed as rewrite rules over templates of
Java expressions, they are still manual and labour intensive because
it requires developers to encode the transformations. When a de-
veloper is unfamiliar with some types, they would have to ask a
co-developer or look up the documentation (which could be out-
dated or unavailable), release notes, or Q&A forums to understand
how to correctly adapt the code to perform the type change. Even
when developers are familiar with the types involved in the type
change, using such program transformation systems is not straight-
forward (their learning is measured in weeks or months [7, 32]).
This introduces a barrier to the adoption of these techniques.

Given that many software evolution tasks are repetitive by na-
ture [23, 45, 46], our key insight is that developers from multiple
open-source projects apply similar type changes in their projects.
In our previous study [31] over a corpus of 400,000 type changes
performed in 130 open source projects, we observed that 68% of

https://doi.org/10.1145/3510003.3510115
https://doi.org/10.1145/3510003.3510115
https://doi.org/10.1145/3510003.3510115

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Timofey Bryksin

Table 1: Motivating Examples

Element Before Element After Usages Before Usages After RewriteRule

1. int x; long x; x = 0; x = 0L; :[n∼\d+]→:[n]L

2. File x; Path x; x.exists() Files.exists(x) :[r].exists()→Files.exists(:[r])

3. new FileOutputStream(

new File(x, fName))

Files.newOutputStream(

x.resolve(fName))

new FileOutputStream(

new File(:[a],:[b]))→
Files.newOutputStream(

:[a].resolve(:[b]))

4. boolean x; AtomicBoolean x; x = true; x.set(true); :[l]=:[r∼true]→:[l].set(:[r∼true])

5. :[t] x; Optional<:[t]> x; x.substring(1,5) x.get().substring(1,5) :[r]→:[r].get()

6. x = null; x = Optional.empty(); null→Optional.empty()

7. Optional.of(Utils.trx(x)) x.map(Utils::trx)
Optional.of(:[r].:[m](:[a]))→
:[a].map(:[r]:::[m])

8. Optional<Integer> x; OptionalInt x; x = Optional.empty(); x = OptionalInt.empty(); Optional.empty()→OptionalInt.empty()

9. AtomicLong x; LongAdder x; x.get() x.sum() :[r].get()→:[r].sum()

10. x.set(0) x.reset() :[r].set(0)→:[r].reset()

11. List<:[t]> xs; Set<:[t]> xs; xs = new ArrayList<>(items); xs = new HashSet<>(items);
new ArrayList<>(:[a])→
new HashSet<>(:[a])

12. xs.get(0) xs.iterator().next() :[r].get(0) → :[r].iterator().next()

them were performed in more than one commit. If we could har-
ness this rich resource of type change examples, we could infer
the adaptations and reduce the burden on the developers. This will
improve the applicability and utility of the current type change
techniques.

In this paper we introduce a technique, TC-Infer, that learns
the task of performing type changes by analyzing several exam-
ples of how other open source developers have performed the
same type change previously. First, TC-Infer mines the commit
history of projects and identifies type changes and other refactor-
ings performed. Then, TC-Infer analyzes them to deduce rewrite
rules that capture the required adaptations to perform the type
change. The rules produced by our technique can be readily used
by existing state-of-the-practice type migration tools like IntelliJ
Platform’s Type Migration[28], or state-of-the-art tools that use
type constraints [5] or type-fact graphs [30]. We leverage two state-
of-the-art techniques : (i) RefactoringMiner [31, 56] to identify
refactorings and (ii) Comby [57] to represent and perform light-
weight syntax transformations as rewrite rules over templates of
Java expressions. Particularly, our technique TC-Infer accepts the
type changes reported by RefactoringMiner as input and returns
rewrite rules for these type changes as Comby templates.

To evaluate the applicability of TC-Infer, we applied it to infer
rewrite rules for the most popular type changes applied in our
corpus of 400K commits from 130 projects. We found that TC-
Infer reported 4,931 rewrite rules for 522 popular type changes
from our corpus. These type changes are diverse in nature: they
comprised (1) varied type kinds (e.g., primitives, paramterized
types), (2) varied namespaces (e.g. JDK, project specific types or
external third-party library types), (3) interoperable types (e.g.,
StringBuffer→StringBuilder), and non-interoperable types (e.g.,
String→List<String>). Further, to demonstrate the effectiveness of
TC-Infer in the real world, we evaluate its accuracy on a dataset of
245 commits containing 3,060 instances of 60 diverse type change
patterns. We manually validated the changes, and our results show

that rules produced by TC-Infer have precision of 99.2% and recall
ranging from 60% upto 100%.

We also demonstrate the utility of TC-Infer by developing a plu-
gin for the IntelliJ IDEA that provides assistance to developers to
perform type changes. To evaluate the utility of IntelliTC [53], we
run IntelliTC on four performance-critical open-source projects.
IntelliTC generated 98 type changes which compile and pass tests
successfully. At the time of writing, the original developers have
already accepted 43 of them.

In summary the paper makes the following contributions:

(1) TC-Infer analyses the previously performed type changes and
deduces the required adaptations as rewrite rules.

(2) IntelliTC assists developers at performing type changes by
surfacing the rules produced by TC-Infer in an IDE.

(3) We empirically evaluated our TC-Infer to demonstrate its ap-
plicability, effectiveness, trustworthiness, and utility, and make
our tools and data publicly available [52].

2 MOTIVATING EXAMPLES

Table 1 showcases a few scenarios that highlight the intricacies
associated with inferring the rewrite rules. The first two columns
(Elements Before/After) show the element whose type was changed,
the next two columns (Usages Before/After) present the adapted
usage of the element, and the last column presents the Rewrite Rules
encoding the adapted usages using Comby template syntax[8]. For
instance, in row 9, the type change from AtomicLong to LongAdder

involves renaming the call site from get to sum. This adaptation
is represented by the rewrite rule :[r].get()→:[r].sum(). The
left side of the rule is an arbitrary Java expression with a template
variable (:[r] binds the source code to template variable r), which
is matched to a program AST. The right side of the expression is
also a Java expression with holes, where each template variable
denotes a substitution with an appropriate fragment of the program
AST, as matched on the left side.

Inferring and Applying Type Changes ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Developers apply a wide variety of edit patterns to adapt the
usages of the element to the type change: Adding the L suffix (Ta-
ble 1, row 1), replacing an instance method with a static method
invocation (Table 1, row 2), updating a static method invocation
(Table 1, row 8), or updating a class instance creation (Table 1, row
11). Often these edits adapt a commonly used idiom of a type. For
instance, in Table 1, row 12, when the type change from List to
Set is performed, the idiom xs.get(0) is replaced with the idiom
xs.iterator().next(). Similarly in Table 1, row 7, when the vari-
able is wrappedwith the Optional data type, the idiom that involves
invoking a static method Utils.trx(x) gets converted to using the
map() method with a member reference to the method Utils::trx.
The adaptations can also involve a composition of two edits. For in-
stance, in Table 1, row 3, the type change from File to Path requires
the nested call to two constructors new FileOutputStream(. . .)

and new File(. . .) to be converted to a static method invoca-
tion Files.newOutputStream() and an instance method invocation
resolve(). It can readily be seen that constructing these rules by
hand can be cumbersome. However, all the current type migration
techniques require the user to do so.

While some type changes are performed between inter-operable
types (e.g., File→Path or StringBuffer→StringBuilder), others can
alter semantics (e.g. List<String>→Set<String). Each type change
could have its own set of preconditions, apart from the gen-
eral ones described by Balaban et al. [5]. For instance, Dig et
al. [10] proposed special preconditions for introducing concur-
rency (Map→ConcurrentMap), and Ketkar et al. [30] proposed special
preconditions for eliminating boxing. One can imagine that type
changes like List→Set, LinkedList→Deque, or String→List<String>

will have their own set of specialized preconditions. Therefore,
proposing a general technique that can completely automate the
application of any type change is extremely challenging. However,
given that a developer wants to perform a particular type change
(altering semantics or not), it can be useful if a tool can suggest (and
apply) the transformations needed to adapt common idioms. For
instance, when performing a type change List→Set, developers
usually adapt the idiom new ArrayList<>() to new HashSet<>() and
adapt xs.get(0) to xs.iterator().next(). The goal of TC-Infer is to
infer rewrite rules for the adaptations applied to common syntactic
idioms in previously performed type changes, and suggest these
rules to the user when performing the same type change.

3 TECHNIQUE

TC-Infer is a technique that produces the rewrite rules applied for
adapting the source code to particular type change patterns (e.g.,
String→Path) in the input commits. Figure 1 gives an overview
of the TC-Infer pipeline. First, TC-Infer collects all type change
instances and other refactorings identified by RefactoringMiner
in each input commit. RefactoringMiner uses its state-of-the-art
statement matching algorithm to match statements across com-
mits that accounts for refactorings like move class or method that
rearrange the statements in the program. It then groups the re-
ported type change instances by the type change pattern they relate
to. Note that each type change instance contains the associated
statement adaptations from the input commits. TC-Infer then pre-
processes each type change instance to account for overlapping

refactorings, such as renaming and extracting variables on top of
the statement adaptations. Finally, TC-Infer infers the rewrite rules
capturing each adaptation, and identifies relevant and safe edits
(see Section 3.4.4 and Section 3.4.5). The final set of rewrite rules ex-
presses the syntactic transformations required to adapt the source
code elements to perform a particular type change.

At the heart of TC-Infer is the AST differencing algorithm
InferRules (introduced in Algorithm 2) which involves two main
steps: (i) establishing the mapping between most similar nodes in
the AST, and (ii) deducing rewrite rules that if performed on the
former AST produces the later one.

3.1 Basic Concepts

We will now describe some basic concepts.

Definition 3.1 (Abstract Syntax Tree, AST). Let 𝑇 be an 𝐴𝑆𝑇 .
The tree 𝑇 has one root node. Each node 𝑡 ∈ 𝑇 , has a parent 𝑝 ∈ 𝑇
(except for the root). Each node 𝑡 ∈ 𝑇 , has a list of children. Each
node 𝑡 ∈ 𝑇 , has an associated label (i.e., AST node kind) and a value,
which is a string.

Definition 3.2 (Template). A lightweight way of matching syn-
tactic structures of a program’s parse tree, like expressions and
function blocks. For Java, it is basically an arbitrary Java expression
with template variables (or holes), that is matched to a program
AST.

Recently, researchers van Tonder and Le Goues [57] proposed
Comby, a multi-language syntax transformation technique for
declaratively rewriting syntax with templates. We use the Java
instantiation of Comby as our templating engine. Details of the
syntax and matching behavior can be found on its website [8].

Definition 3.3 (TemplateVariable). According to Comby’s syn-
tax, :[n] binds the source code to a template variable n. A template
variable can match all characters (including whitespace) lazily up
to its suffix (like .*? in regex) within its level of balanced delimiters.
The code snippet is matched to these kinds of template variables:
• :[[a]] — matches identifiers, analogous to \w+ in regex.
• :[n∼[+-]?(\d*\.)?\d+\$] and :[n∼\d+] — matches numbers.
• :[h∼0[xX][0-9a-fA-F]+] — matches hexadecimals.
• :[[exc∼([A-Z][a-z0-9]+)+]] — matches class names.
• :[[exc∼\“(.*)\“]] — matches string literals.
• :[c∼[A-Z]+(_[A-Z]+)*] — matches constants.
• :[n] — if none of the above.

These specific kinds of template variables capture richer context
when inferring rewrite rules, and minimize the spurious application
of a rewrite rule.

Definition 3.4 (RewriteRule, 𝐿 → 𝑅). The left side of
RewriteRule is a Template that is matched to a program AST,
while the Template on the right side contains TemplateVariable
that denote the substitution with an appropriate fragment of the
program AST, as matched on the left side. For instance, the rule
:[v].exists()→Files.exists(:[v]) will match concrete instances
f.exists() and mngr.getResource().exists(), and rewrite them to
Files.exists(f) and Files.exists(mngr.getResource()), respectively.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Timofey Bryksin

Final set of rulesFinal set of rules

Type Change

Instances & Adaptations

Type Change

Instances & Adaptations

Type Change

Instances & Adaptations

Type Change

Instances & Adaptations

Type Change

Instances & Adaptations

Type Change

Instances & Adaptations Commit

Refactoring

Miner

 e.g., Renaming and Extract/Inline Variable Other refactorings

Type Change Instances &
Respective Adaptations

...

...

...

InferRules Rule

Rule

Rule

...

Relevant &
Safe?

Final set of
rewrite rulesPreprocessing Commit

 Commit

 Filter & Group by corresponding pattern Type Change Pattern

(e.g., String to Path)

Type Change Instances &
Respective Adaptations

Type Change Instances &
Respective Adaptations

...

...

...

Final set of rulesFinal set of rulesFinal set of
rewrite rules

Final set of rulesFinal set of rulesFinal set of
rewrite rules...

...

Figure 1: The high-level overview of the TC-Infer pipeline.

Definition 3.5 (GetTemplateFor). Given a code snippet 𝑐 , this
operation returns a template that captures the structure of an entire
code snippet. To generate such a template, the source code snippet
is parsed as AST, and each child of the root of the AST is replaced
with a template variable, iff the child is not a special Java token(s)
(e.g., keywords like new or return, or special characters like , or ;) (as
shown in Example 3.1). This idea of inferring structural templates
for code snippets is inspired from recent work by Luan et al. [38].

Definition 3.6 (Match). Given a template 𝑇 and a code snippet
𝑐 , Match returns a mapping between the TemplateVariables in
𝑇 and syntactically valid sub-expressions of 𝑐 iff the template 𝑇
matches the entire snippet 𝑐 (as shown in Example 3.1). This idea of
using templates to infer edit patterns is inspired from recent work
by Bader et al. [4].

Definition 3.7 (Substitute). Given a Template 𝑇 and mappings
from TemplateVariables in 𝑇 to syntactically valid Java expres-
sions, Substitute returns the template 𝑇 ′ where the Template-
Variables in 𝑇 are replaced with the corresponding expressions
(as shown in Example 3.1).

Definition 3.8 (Rewrite). Given a rewrite rule 𝐿 → 𝑅 or a list of
rules 𝐿1 → 𝑅1, . . . 𝐿𝑛 → 𝑅𝑛 and a code snippet 𝑐 , this operation
applies (sequentially) the input rewrite rule on 𝑐 .

Definition 3.9 (Intersect(∩)). Given two matches 𝑚1 and 𝑚2
(i.e., the output of the Match operation), this operation returns
a mapping between TemplateVariables across𝑚1 and𝑚2 that
bind to the same value. In other words, it is a set intersection
over the values the TemplateVariables are bound to (as shown in
Example 3.1).

Definition 3.10 (Intersect-isSubtree(∩𝑠)). Given two matches
𝑚1 and𝑚2 this operation returns a mapping between Template-
Variables such that the the value bound to the TemplateVariables
of𝑚2 is a subtree of the values bound to TemplateVariables of
𝑚1 (as shown in Example 3.1).

Definition 3.11 (Difference(−)). Given two matches𝑚1 and𝑚2,
the operation 𝑚1 −𝑚2 would return TemplateVariables from
𝑚1 that are bound to a value that no variable in𝑚2 binds to. In
other words, it is a set difference operation over the value that
the TemplateVariables are bound to. This operation returns a
list of TemplateVariables sorted by size of its value (as shown in
Example 3.1).

Example 3.1. Some basic operations with Templates:
c1 = x.substr(1)

c2 = x.get().substr(1)

t1 = GetTemplateFor(c1) # :[r].:[m](:[a∼\d+])
t2 = GetTemplateFor(c2) # :[r’].:[m’](:[a’∼\d+])
m1 = Match(c1, t1) # {r:x,m:substr,a:1}

m2 = Match(c2, t2) # {r’:x.get(),m’:substr,a’:1}

s1 = Substitute(t1, {r:foo()}) # foo().:[m](:[a])

m1 ∩ m2→ {m:m’, a:a’}

m2 ∩𝑠 m1→ {r’:r}

m1 − m2→ [r]

RenameTemplateVars(t1, {r : x}) → :[x].:[m](:[a])

3.2 Input

We use RefactoringMiner to collect type changes and other refac-
torings performed. Recently Tsantalis et al. [56] have shown that
RefactoringMiner can detect type changes with 99.7% precision
and 94.8% recall. In particular, it reports four kinds of type changes:
Change Variable Type, Change Parameter Type, Change Return Type,
and Change Field Type, along with the relevant statements up-
dated across the commits that refer to the element whose type
has changed, i.e., statements in the def-use chain (Figure 2). These
matched statements could be a subset of all the statements that
were actually adapted to perform the type change. Identifying all
adapted statements would require additional type-binding informa-
tion and call-graph analysis, but RefactoringMiner works purely
on syntax. As input, our technique accepts a set of type change
instances reported by RefactoringMiner.

3.2.1 Pre-processing. It has been observed by previous re-
searchers [31] that type changes are often complemented with
other refactorings like renaming and extract/inline variable. How-
ever, these refactorings are not mandatory to be performed when a
type change is performed. Therefore, we normalize the collected
adaptations by undoing the renaming and extract/inline variable
refactoring in the snippets. These key insights reduce the delta
between the statement mappings reported by RefactoringMiner,
thus reducing the number of noisy rewrite rules produced.

3.3 Output

For each type change pattern (i.e., int→long or
String→Optional<String>) performed in the input type

Inferring and Applying Type Changes ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 - File fldr;

2 + Path fldr;

3 - readfldr(fldr , mode , extensions)

4 + readfldr(fldr.toFile (), extensions.toString ())

5 - new ResourceHandler(dir ,new Handler(

6 - new File(fldr)))

7 + new ResourceHandler ().set(new Handler(

8 + Paths.get(fldr)),dir)

9 - new FileOutputStream(new File(fldr ,"test.txt"))

10 + Files.newOutputStream(fldr.resolve ("test.txt"))

Figure 2: Type Change Instance reported by Refactoring-

Miner for the type change pattern File→Path

change instances, our technique will produce a set of rewrite rules
that can adapt the usages (type dependent idioms) to the new type.

TransformationSpec ::= TypeChangePattern RewriteRules
TypeChangePattern ::= RewriteRule

RewriteRules ::= RewriteRule Guards RewriteRules | ∅
Guards ::= TemplateVariable Guard Guards | ∅
Guard ::= Type Guard | regex Guard | ∅

As shown above, TransformationSpec contains a Type-
ChangePattern which is basically a RewriteRule like int→long

or List<:[t]>→Set<:[t]>, and the RewriteRules that capture the
necessary adaptation. In RewriteRules, each RewriteRule is as-
sociated to Guards, where these guards constrain the code snippet
that binds to the TemplateVariables, either based on regular ex-
pressions and/or the return type of the code snippet. We obtain
this information from the type inference provided in Eclipse JDT.
For instance, for the rule :[r].exists()→ Files.exists(:[r])

from Table 1, row 2, we record that the return type of r is File.
Similarly in the rule :[n∼\d+]→ :[n]L, we infer two guards — re-
turn type of n is int and that :[n] is a number literal. While the
regex Guard is expressed using the Comby language itself, we sepa-
rately record the Type guard. These Guards minimize the spurious
matches when applying the rewrite rules. TransformationSpec is
basically an adaptation of the Twining syntax proposed by Nita
and Notkin [48] to the Comby language with additional regex based
guards. The rewrite rules encoded in the Comby syntax can be loss-
lessly translated to the IntelliJ Platform’s structural replacement
templates [27] or to the DSL proposed by Balaban et al. [5] and
Ketkar et al. [30], since all of these are closely related to the Twining
syntax. For each rewrite rule, TC-Infer also reports the real-world
instances where the rewrite rule were performed.

3.4 TC-Infer

3.4.1 Generating the RewriteRules. Given two versions of a
code snippet, the goal of GenerateRewriteRule in Algorithm 1
is to deduce the rewrite rule applied across them. The higher level
intuition is the following: (1) capture the structure of the before and
after code snippets as templates (𝑇1 and 𝑇2), and (2) infer rewrite
rules by mapping the holes of 𝑇1 to the holes of 𝑇2, if possible.

Example 3.2. Lets consider a simple example (Table 1, row 4).
1 - x = true;

2 + x.set(true);

As described in Algorithm 1, we first construct a structural template
(Definition 3.5) that matches the two code snippets: :[lh]=:[rh]
and :[r].:[m](:[a]) (Line 10). The two structural templates and

Algorithm 1 Generate Rewrite Rules
1: function RefineRule(LHS, RHS)
2: RHS← RenameTemplateVars(RHS, LHS ∩ RHS)
3: if any(LHS ∩𝑆 RHS) or any(RHS ∩𝑆 LHS) then
4: LHS,RHS← Decompose(LHS,RHS)
5: LHS,RHS←⟲ RefineRule(LHS,RHS)
6: LHS← Substitute(LHS, LHS − RHS)
7: RHS← Substitute(RHS,RHS − LHS)
8: return RHS, LHS
9: function generateRewriteRule(c1, c2)
10: LHS,RHS← [Match(c,GetTemplateFor(c)) for c in [c1, c2]]
11: return RefineRule(LHS,RHS)

their respective matches ({lh:x, rh:true} and {r:x, m:set, a:true})
are passed to RefineRule. Then the TemplateVariables that
map across the two templates (LHS ∩ RHS from Definition 3.9),
are consistently renamed (Line 2), i.e., lh → r and rh → a. Fi-
nally, the TemplateVariables that do not map across the two
templates (LHS − RHS/RHS − LHS) are substituted with their
concrete values (Line 6 & Line 7), resulting in the rewrite rule
:[lh]=:[rh]→:[lh].set(:[rh]).

Example 3.3. Let’s consider the adaptation (Table 1, row 7) ap-
plied to perform the type change from :[t]→Optional<:[t]>.
1 - Utils.trx(s)

2 + s.map(Utils ::trx)

The structural template capturing the structure of these snip-
pets are :[r].:[m](:[a]) and :[r’].:[m’](:[a’]) respectively. Con-
sequently, the matches produced are LHS={r:Utils, m:trx, a:s}

and RHS={r’:s, m’:map, a’:Utils::trx}. Since LHS ∩ RHS =
{a:r’}, we update the RHS to :[[a]].:[[m’]](:[[a’]]) in Line 2
(i.e., r′ renamed to a. In Line 3 we check if any template vari-
ables need to be further decomposed (LHS ∩S RHS ={r:a’, m:a’}).
Next, the source code bound to the variables 𝑎′ is decomposed
into the template (:[x]:::[y]) and is substituted into the RHS
:[[a]].:[m’](:[[x]]:::[y]). In the recursive call the common vari-
ables are consistently renamed, i.e., 𝑥 → 𝑟,𝑦 → 𝑚 and the
unmatched template variables are substituted with their con-
crete values, resulting in the rewrite rule :[[r]].:[m](:[a]) →
:[a].map(:[[r]]:::[m]).
3.4.2 Establishing Mappings. As described in Section 3.2, for
each element whose type has changed, RefactoringMiner reports
the relevant code snippets that are adapted, but it does not capture
the exact edits that are performed across the two snippets. In this
section we will explain Algorithm 2, that looks for mappings be-
tween the twomatched statements reported by RefactoringMiner.
This Algorithm 2 is based on how developers would naturally at-
tempt to construct rewrite rules — search for unmodified pieces
of code, then from the remaining figure out which containers of
source code can be mapped to each other and then finally look for
the precise mappings between the code snippets in the mapped
containers. InferRules produces a flattened list of rewrite rules
that capture the atomic edits and composite edits.

Example 3.4. Let’s consider the following statement from Fig-
ure 2 adapted to perform the type change File→Path.
1 - new ResourceHandler(dir ,new Handler(new File(fldr)))

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Timofey Bryksin

Algorithm 2 The InferRules procedure
1: function getWeights(n1, n2):
2: Rules← InferRules(n1, n2)
3: returnMax(NumberOfTokensBoundToVars(Rules))
4: function getOptimalPairs(ns1,ns2)
5: return HungarianMethod(ns1, ns2, getWeights)
6: function InferRules(n1, n2)
7: if not isIsomorphic(n1, n2) then
8: (LHS,RHS) ← GenerateRewriteRule(n1, n2)
9: subRules← []
10: for c1, c2 in getOptimalPairs(n1.children, n2.children) do
11: subRules.𝑒𝑥𝑡𝑒𝑛𝑑 (InferRules(c1.value, c2.value))
12: coarsestEdits = largestNonOverlapping(subRules)
13: if Rewrite(coarsestEdits, n1) == n2 then
14: if Rewrite((LHS,RHS), n1) == n2 then
15: return subRules.𝑎𝑝𝑝𝑒𝑛𝑑 ((LHS,RHS))
16: return subRules
17: else

18: (LHS,RHS) ← Merge(subRules, (LHS,RHS))
19: if Rewrite((LHS,RHS), n1) == n2 then
20: return [(LHS,RHS)]
21: return []

2 + new ResourceHandler ().set(new Handler(

3 + Paths.get(fldr)),dir)

For the given input nodes 𝑛1 and 𝑛2, TC-Infer first computes the
rewrite template new :[c](:[s],new Handler(new File(fldr)))→new

:[c]().set(new Handler(Paths.get(fldr),:[s]) by invoking Gener-
ateRewriteRule (Algorithm 1). The variable fldr was not gen-
eralized here because generateRewriteRule only decomposes
the two template variables LHS and RHS if they intersect (Defini-
tion 3.9) or intersect-subtree (Definition 3.10). To deduce more fine-
grained mappings, TC-Infer attempts to optimally pair the children
of the nodes 𝑛1 and 𝑛2. Naively, pairing the children in the order
they appear is not a sound approach for two main reasons: (i) AST
kind of 𝑛1 may not be same as 𝑛2 (in this example 𝑛1 is of the kind
class instance creation and 𝑛2 is of the kind method invocation), (ii)
children might be reordered, added or removed (in this example, the
method set accepts the arguments in the reverse order). Therefore,
in our example, TC-Inferwill pair new Handler(new File(fldr))with
new Handler(Paths.get(fldr)) and sourceDirwith sourceDir (Line 10).
Consequently, it will pair new File(fldr) with Paths.get(fldr), and
produce the rewrite rule new File(:[a])→Paths.get(:[a]).

To find optimal pairs, we implemented and applied the Hun-
garian method [34] that tackles the assignment problem (Line 10).
This problem consists of finding, in a weighted bipartite graph, a
matching of a given size, in which the sum of weights of the edges
is a minimum (or maximum). We treat the two lists of children as
the partition and maximize the number of tokens bound to template
variables in the rewrite rules inferred between the paired nodes.
The optimal pairing not only allows us to continue finding more
fine grained rules when the root node kinds do not match, but also
accounts for reordering or alteration of the children list. The meth-
ods getWeights and InferRules invoke InferRules (Line 11).
TC-Infer tabulate the inferred templates against the offsets of the
updated location to prevent this redundant computation.

3.4.3 Inferring Composite Rewrite Rules.

Example 3.5. Lets consider the adaptation from Table 1, row 3.
1 - new FileOutputStream(new File(fldr ,"test.txt"))

2 + Files.newOutputStream(fldr.resolve ("test.txt"))

While the operation generateRewriteRule can deduce the tem-
plate variables for generalizing source code that is equal across the
edit, it cannot deduce composite rewrite rules. In this example, first
TC-Infer computes the rewrite rule R1 =new FileOutputStream(new

File(fldr,"test.txt"))→Files.newOutputStream(fldr.resolve("test

.txt")). At this step no template variables were inferred. Next,
it deduces finer mappings from new File(fldr,"test.txt") to
fldr.resolve("test.txt"). For this mapping, the template R2=new
File(:[a1],:[a2])→ :[a1].resolve(:[a2]) is deduced. After it has
collected the inferred rules for the optimal pairs of children nodes,
it identifies the largest non-overlapping rules (Line 12). It then
applies these edits to the input node 𝑛1 and checks if it yields node
𝑛2. It can be observed that, in our example, applying the template
R2 upon new FileOutputStream(new File(fldr,"test.txt")) will not
yield Files.newOutputStream(fldr.resolve("test.txt")). Therefore,
TC-Infer now attempts to merge the rewrite rules inferred for
the children R2 into the rewrite rule learnt for the parent node
R1 to produce R3 - new FileOutputStream(new File(:[a1],:[a2]))→
Files.newOutputStream(:[a1].resolve(:[a2])) (Line 18). TC-Infer
will also report R2 because it correctly captures the edit applied
between new File(fldr,"test.txt")→fldr.resolve("test.txt").

The function InferRules returns a flattened tree of edits, where
the children edits are more fine-grained than the parent edit. There-
fore, in Line 13 when we check if subRules transform node 𝑛1 to
node 𝑛2, we consider the coarsest subrules (Line 12 largest non-
overlapping edits) because these larger rules will be merged into
composite rewrite rules of the fine-grained rules.
3.4.4 Identifying relevant edits. The updated statements re-
ported by RefactoringMiner for each type change instance can
also contain edits (some updated literals or expressions) that are
not type dependent upon the root of type change. We consider an
edit rewrite rule relevant to the type change from type 𝑆 to type
𝑇 , (i) if the return type of the concrete expression captured by the
LHS of the rewrite rule is 𝑆 (e.g., object creation or literals), and
(ii) if the rewrite rule contains template variables that match an
expression (e.g., variable reference) of type 𝑆 .

3.4.5 Eliminating Unsafe RewriteRules. The problem of ex-
pressing a change as a rewrite rule is that any token (s) that does
not appear in the before input code snippet (n1) but appears in
the after code snippet (n2) will not be generalized as a hole. There-
fore, if the adaptation involves usage of a new variable or a new
string, TC-Infer cannot generalize the adaptation with respect to
the larger context because it has access to the AST that matched the
left side. Growing the size of the match to include the declaration
of the variable will make the rule context specific. Moreover, it is
unclear how these scenarios could be expressed as rewrite rules.
TC-Infer eliminates such unsafe rules from the output.

3.5 Comparison with Previous Work

Instead of InferRules (i.e. Algorithm 2), TC-Infer could also use
other techniques that apply hierachical or greedy clustering tech-
niques (Bader et al. [4], Rolim et al. [51]) suggested for inferring

Inferring and Applying Type Changes ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

recurring edit patterns. For instance, for a type change pattern we
could have (1) clustered all the corresponding adaptations from
our dataset and generalize the tree patterns, (2) then applied an-
ti-unification to generalize edit patterns, (3) then cluster the edit
patterns, and (4) finally identify the relevant edit patterns. This
would produce rewrite rules required for the TransformationSpec.

However, we did not adopt this strategy because (1) clustering
tree patterns is an overkill for our problem which is constrained
to expression- and statement-level transformations, (2) we have to
account for overlapping refactorings and unrelated changes, (3) an-
ti-unification for terms may not infer composite rules, and (4) many
instances for each edit pattern applied to adapt a type change are
unavailable (in most cases we have at most two examples).

4 EVALUATION

To understand the effectiveness, the real-world relevance, and the
utility of our technique, we answer four research questions:

RQ1. How applicable is TC-Infer? Using TC-Infer is beneficial
if rewrite rules inferred for a particular type change from one
commit could be applied in another commit to perform the same
type change. Are such scenarios common?
RQ2. Can we trust the existing practices for performing type
changes? We investigate if manually performing type changes
could unknowingly introduce idioms for which there are better
alternatives. This will highlight the importance of standardizing
type changes with tools.
RQ3. How effective are the RewriteRules for performing type
changes? We compare the application of rewrite rules inferred by
TC-Infer to the changes performed by real-world developers, to
highlight the benefits and the pitfalls of TC-Infer.
RQ4. Did developers find the RewriteRules useful? We inves-
tigate whether the rules produced by TC-Infer are useful to the
developers to perform type changes in their IDEs.

4.1 Dataset

Previously, we conducted the first large-scale and the most fine-
grained empirical study [31] on type changes performed in open
source Java repositories on Github. In this previous work [31] we
mined 297,543 type changes and their subsequent code adaptations
from a diverse corpus of 129 Java projects containing 416,652 com-
mits. With this rich dataset we answered research questions about
the practice of type changes. This dataset contains instances of
types with diverse characteristics with respect to their visibility
(public, private), namespace (internal or application-specific, ex-
ternal, or JDK), kind (array, parameterized, simple, wildcard), and
the relationship between the source and target types. We base our
evaluation on the same dataset, because the diversity of the types
involved in the type changes of this dataset will help to generalize
our findings. We had identified 605 popular type changes performed
in our dataset1. We considered a type change popular if it was per-
formed in at least two unique projects. In this study, we evaluate
the applicability and effectiveness of TC-Infer at inferring rules
for these popular 605 type changes.

1https://zenodo.org/record/3906503#.Yfbnyy-B3T8

4.2 RQ1: How applicable is TC-Infer?

In this question we explore the type changes that can benefit from
TC-Infer, their various characteristics and how applicable is TC-
Infer for these type change patterns. We first applied TC-Infer
upon all instances corresponding to the 605 popular type change
patterns and collected 4,931 safe rewrite rules for 522 type change
patterns (86.28%). Further, we identified 274 (52.49%) type changes
for which TC-Infer reported at least one prevalent rule. We consider
a rule prevalent if it is applied to adapt to the same type change in
more than one commit. We identified 832 prevalent rules for the
274 type changes. By investigating the remaining 13.72% of type
changes with no reported rule, we found: (1) the source and the tar-
get types were semantically so different (e.g. String→Map<Integer,

String>) that no safe rewrite rule could be inferred; (2) the source
and the target type were so inter-operable that it needed no update
(e.g. replacing with super type, primitive widening, or boxing).

0 5 10 15 20 25 30 35

Popular Rules

Minimum Commits

p-value=5.59e-01 H(2)=3.41e-01

Mean
Median

Figure 3: Distribution of the number of prevalent rules reported for

each type change and the minimum number of commits required

to infer the prevalent rules for each type change.

Figure 3 plots the distribution of the number of prevalent rules
reported for the 274 type changes. Themean prevalent rules inferred
for each type change is 3.48. TC-Infer produced one prevalent rule
for the type change Function<X,Integer>→ToIntFunction<X>, while
for long→int it produced 34 prevalent rules.

Analyzing a single commit where a particular type change is
performed will not surface all prevalent rules, because the updated
code may not use all corresponding APIs. The number of commits
required to infer all prevalent rules has a direct impact on the appli-
cability of TC-Infer, because some type changes may not be per-
formed in many commits. To evaluate this, we identify the smallest
set of commits that contain all prevalent rules for each type change.
Computing this smallest set of commits can be viewed as a Set Cover
problem. Given a set of elements {1, 2, . . . , 𝑛} (called the universe,
in our case, all prevalent rewrite rules for each type change) and a
collection𝑚 of sets (in our case, these are the prevalent rewrite rules
applied in the commits) whose union equals the universe, the set
cover problem is to identify the smallest sub-collection of 𝑆 whose
union equals the universe with the minimum weight. While this
problem is NP-Complete, its greedy approximation algorithm [61]
suffices for our purpose, since the cardinality of our universe is
not very large (≤ 34). Figure 3 plots the distribution of the cardi-
nality of the minimum set for each of the 274 type changes. On
average, TC-Infer required approximately two commits to infer
all prevalent rewrite rules for a type change, and required at most
18 commits to infer the 34 rules for the int→long type change.

The number of prevalent rules depend on various factors, such
as the source and target type, the availability of examples, and the

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Timofey Bryksin

ability of TC-Infer to infer rules from the previously applied type
changes. It is not possible to determine if TC-Infer has inferred all
possible rewrite rules for a particular type change. Intuitively, all
possible rewrite rules for a type change are complete when they
cover all the instance methods/constructors/fields in the source
type. Previous researchers Li et al. [37] adopt this convention in
their formalization of API migrations. However, this is not applica-
ble to type changes, since type changes have to consider all possible
usages of a particular type. For instance, when updating wrapper
methods (Integer.toString(x)→Long.toString(x)), it is not pos-
sible to enumerate all common static method invocations that could
act as such wrappers. Type changes can be semantics altering and
sometimes no mappings are found for any member method or field
(e.g., x.trim()→x.get().trim()).

TC-Infer deduced rules for diverse type change patterns:

(1) Involved variety of AST Node Kinds like primitive, simple, pa-
rameterized, or array types (e.g., int→long, int→ OptionalInt), or
byte[]→ ByteBuffer)
(2) Involved JDK types, project-specific Internal types or External
third party library types (e.g., Predicate→IntPredicate, Java’s
List→Guava’s ImmutableList, or String→hadoop.Path)
(3) Involved Interoperable (e.g.,File→Path) and non-Interop-
erable (e.g., List→Set) type changes.

4.3 RQ2: Can we trust the existing practices for

performing type changes?

In this question we want to understand if the current practice of
performing type changes is reliable enough to learn from. Do de-
velopers introduce bugs, inconsistencies, or commonly disregarded
code idioms when performing type changes? This will highlight
the importance of standardizing type changes via tools.

We first identify popular type changes from our dataset, such that
the authors of the paper can easily find documentation and discus-
sions related to these types. For this purpose, we randomly sample
85 (approximately one-third) type change patterns from the 274
patterns for which a prevalent rule was reported. We then exlude
all patterns involving Internal or project specific types, and identify
60 type change patterns for which documentation and discussions
are publicly available. To answer this question, we manually inves-
tigate each of the 191 prevalent rewrite rules corresponding to the
60 type changes. The two authors that investigated these have five
and two years of professional software development experience,
respectively. We check whether (1) the rule is correct (i.e., similar to
what a human would produce) based on the corresponding concrete
examples from where the rule was inferred, (2) the rule preserves
the semantics, and (3) the rule does not introduce a commonly dis-
regarded code idiom. This list was obtained from the IntelliJ IDEA’s
Java Code Inspections [26].

We found that all 191 rules were correct, i.e., similar to what a
human would produce from the concrete example. Further analy-
sis of the 191 rules revealed six nonconforming rewrite rules, as
shown in Table 2 for four type changes. The first two rewrite rules
in the second column of Table 2 are semantically not the same,
because getCanonicalPath resolves the path by accessing the local
file system, while the methods getAbsolutePath and toString do not.
Casting a long value to an int type is an unsafe practice because

it does not handle the possible number overflow, instead Java 8’s
Math.toIntExact is recommended. We noticed that in the real world,
developers sometimes apply some nonconforming rules that intro-
duce unnecessary inconsistencies, performance, or maintainability
overheads. However, in the majority of cases the developers fol-
lowed the best practices, thus we can learn from the wisdom of
the crowd. This highlights the importance of standardizing the
adaptation for type changes using rewrite rules that are verified by
domain experts.

4.4 RQ3: How effective are the RewriteRules

for performing type changes?

To evaluatate the effectiveness of rewrite rules inferred by TC-Infer,
we replicate some type changes performed in our corpus and semi-
automatically compare them to the changes applied by the original
developer. For this purpose we developed IntelliTC, that is built
upon IntelliJ’s Type Migration framework [28], and can be config-
ured via the TransformationSpec produced by TC-Infer. We then
compare the changes performed by IntelliTC to those performed
by the original developers.

4.4.1 IntelliTC. This is our industry-strength tool [52] to per-
form type changes by leveraging IntelliJ’s TypeMigration framework.
It allows the developers to express rewrite rules as IntelliJ Platform’s
structural replacement templates. Moreover, it operates in multiple
modalities: (1) the inspection mode suggests the user to perform
type changes based on the recommendations from Effective Java
and other popular developer forums, (2) in the classic mode, devel-
oper can invoke IntelliTC as an intention action [25] (like rename
refactoring), and (3) IntelliTC overcomes the discoverability and
late awareness [18, 19] problem by surfacing certain type change
refactorings through the Suggested Refactoring interface [24]. It also
collects detailed telemetry information capturing how the developer
is using IntelliTC. More details about IntelliTC and its usability
can be found in our accompanying tool demonstration paper.

4.4.2 Identifying Test Scenarios. Choosing commits for evalu-
ating the effectiveness of our technique is not as straightforward as
in the case of API Migration [35, 60], because randomly selected
commits might not be using all corresponding APIs and operators.
Therefore, for each type change pattern we identify the set of com-
mits that at least contains all popular adaptations from our dataset,
based on the minimum sets of commits identified in Section 4.2.
To replicate the type changes, we invoked IntelliTC for each in-
stance in the 245 commits and manually compare the replicated
type changes to the ones applied by the original developers.

4.4.3 Validating the Edits. For each statement 𝑠𝑝 containing
these type dependent idioms (𝑒) in the parent commit (𝑝), we find
its matched statement 𝑠𝑐 in the child commit (𝑐). To obtain the real
mapping (i.e., the adaptation applied by the original developer), we
search RefactoringMiner’s reported statement mappings to find
a mapping containing statement 𝑠𝑝 . If RefactoringMiner does not
have a mapping for 𝑠𝑝 , we get this information from the mapping
store obtained by applying the GumTree algorithm [17] upon the
files containing 𝑠𝑝 and 𝑠𝑐 . If any rewrite rule from our dataset
transforms 𝑠𝑝 into 𝑠𝑐 , we consider it as a True positive. Otherwise,
we run InferRules (Algorithm 2) upon the real mapping and collect

Inferring and Applying Type Changes ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Identified spurious rewrite rules introducing commonly disregarded idioms and the corresponding recommended rewrite rule

(𝑛: number of type change instances,𝐶: number of commits, 𝑃 : number of projects each rule is found in)

Type Change Spurious Rule n/C/P Recommended Rule n/C/P

File→Path :[v].getCanonicalPath()→:[v].toString()
:[v].getCanonicalPath()→:[v].toAbsolutePath().toString()

12/7/5
8/6/3

:[v].getCanonicalPath()
→:[v].toRealPath().toString() 15/8/3

File→Path :[v].getAbsolutePath()→:[v].toString() 60/8/6 :[v].getAbsolutePath()
→:[v].toAbsolutePath().toString() 57/7/3

int→long :[v]→(int):[v] 58/51/25 :[v]→Math.toExactInt(:[v]) 8/4/4

:[t]→List<:[t]> :[v]→Arrays.asList(:[v]) 10/5/2 :[v]→Collections.singletonList(:[v]) 9/5/2

:[t]→Optional<:[t]> :[v] == null→!:[v].isPresent() 2/2/1 :[v]→:[v].isEmpty() 3/2/1

the rewrite rules (𝑅). We then apply 𝑅 (if 𝑅 ≠ ∅) upon the identified
idioms in commit 𝑝 , and manually validate:
(1) True Positive: the rule(s) 𝑅 applied on 𝑠𝑝 correctly adapts to the

type change. In some scenarios, despite applying the correct
change, 𝑠𝑝 cannot be transformed to 𝑠𝑐 , because the original
developer had applied other unrelated overlapping changes.

(2) False Positive: the rule(s) in 𝑅 produces incorrect code, because
the rewrite rule mismatched when applied in context.

(3) Not Applicable: 𝑅 = ∅ and the performed adaptation involves us-
age of new additional functionality or other unrelated changes.

(4) False Negative: 𝑅 = ∅ but the performed change is Applicable,
implying Infer could not capture the adaptation as a rewrite rule.
Note that running InferRules again on the real mapping pre-

vents us from counting a scenario false negative even when the
correct rewrite rule was unavailable in our dataset. These scenarios
occur because RefactoringMiner’s statement matching algorithm
fails to match and report these cases. We believe that Refactor-
ingMiner can be further fine tuned to handle these scenarios. Our
goal is to highlight the capabilities and expose the limitations of
TC-Infer at deducing rewrite rules, for further improvement.
4.4.4 Results. In Table 3 we summarize the results of our ex-
periment, which evaluated 245 instances of type changes be-
longing to 60 diverse kinds. It can be seen that in almost all
the cases the precision is 100%. However, this is unsurprising
since TC-Infer is very conservative when producing rewrite rules
(pre-processing the snippets, and identifying relevant and safe
rules). Investigating the false positives revealed that other over-
lapping refactorings and semantic non-altering changes confused
our technique (Algorithm 2). For instance, for the adaptation
(Long)Utilities.getRow()→(long)getRow(), InferRules could pro-
duced the rule (Long)Utilities.:[v]→(long):[v] because our tech-
nique does not account for Import as Static Method refactoring.

We are more interested in the recall of the rules produced by
our technique, i.e., the instances where our technique was not able
to produce any rule for a particular adaptation. It can be seen that
we have recall ranging from 67% for java.io.File→ fs.hadoop.Path

to 100% for AtomicLong→LongAdder. We manually investigated each
false negative and found three main reasons leading to them:
(1) Additional context is required. The most common reason
for TC-Infer to produce no rules across a given statement mapping
(𝑠𝑝→𝑠𝑐) is that the adaptation requires more information from the
context than what was captured by the statement mappings. We
observed that adaptations use elements (like variables) existing in
the context or require new elements to be created in the context.
In the below example, the adaptation requires an instance variable

Table 3: Evaluated type changes

Type Change n #A #UR TP NA P R

:[v0]→List<:[v0]> 95 43 15 27 9 1.00 0.79
:[v0]→Optional<:[v0]> 30 51 11 49 2 1.00 1.00
:[v0]→AtomicReference<:[v0]> 6 19 7 14 5 1.00 1.00
:[v0]→Supplier<:[v0]> 8 12 7 12 0 1.00 1.00
Entry<:[v1],:[v0]>→Entry<:[v0],:[v1]> 7 19 8 19 0 1.00 1.00
boolean→AtomicBoolean 4 11 5 10 1 1.00 1.00
byte[]→ByteBuffer 36 51 15 49 2 1.00 1.00
ImmutableList<:[v0]>→ImmutableSet<:[v0]> 2 5 1 5 0 1.00 1.00
Mongo→MongoClient 9 23 9 23 0 1.00 1.00
double→int 4 16 4 8 8 1.00 1.00
float→double 124 49 17 48 1 1.00 1.00
int→Duration 15 29 9 25 1 0.89 1.00
int→AtomicInteger 4 15 5 15 0 1.00 1.00
int→long 552 108 14 108 0 1.00 1.00
BufferedOutputStream→OutputStream 2 2 1 2 0 1.00 1.00
File→Path 18 35 16 33 0 1.00 0.95
File→hadoop.fs.Path 8 23 9 13 1 1.00 0.59
FileInputStream→InputStream 8 12 2 12 0 1.00 1.00
Boolean→boolean 9 19 10 19 0 1.00 1.00
Integer→int 190 48 39 45 1 1.00 0.96
Long→long 24 61 20 58 1 0.95 1.00
String→byte[] 38 10 4 7 3 1.00 1.00
String→int 6 7 7 7 0 1.00 1.00
String→File 26 33 8 31 2 1.00 1.00
String→InetSocketAddress 2 6 2 6 0 1.00 1.00
String→Path 11 18 5 16 2 1.00 1.00
String→UUID 5 4 2 4 0 1.00 1.00
String→regex.Pattern 18 12 7 12 0 1.00 1.00
StringBuffer→StringBuilder 517 105 4 103 2 1.00 1.00
Path→File 8 14 7 14 0 1.00 1.00
SimpleDateFormat→DateTimeFormatter 9 22 8 20 2 1.00 1.00
Date→Instant 15 25 7 21 3 1.00 0.95
Date→LocalDate 19 32 13 24 8 1.00 1.00
LinkedList<:[v0]>→Deque<:[v0]> 9 16 7 16 0 1.00 1.00
List<:[v0]>→ImmutableList<:[v0]> 15 12 4 11 0 0.92 1.00
List<:[v0]>→LinkedList<:[v0]> 9 24 4 22 1 1.00 0.96
List<:[v0]>→Set<:[v0]> 50 91 37 83 6 1.00 0.98
Map<:[v1],:[v0]>→ConcurrentMap<:[v1],:[v0]> 7 16 8 15 1 1.00 1.00
Map<String,String>→Properties 2 10 4 9 0 1.00 0.90
Optional<Integer>→OptionalInt 45 10 2 10 0 1.00 1.00
Queue<:[v0]>→Deque<:[v0]> 3 17 7 14 3 1.00 1.00
Queue<:[v0]>→BlockingQueue<:[v0]> 2 13 5 11 0 1.00 0.85
Random→SecureRandom 19 21 3 21 0 1.00 1.00
Stack<:[v0]>→Deque<:[v0]> 3 32 17 32 0 1.00 1.00
AtomicInteger→LongAdder 23 124 17 124 0 1.00 1.00
AtomicLong→AtomicInteger 2 11 3 6 5 1.00 1.00
AtomicLong→LongAdder 186 1026 22 1025 1 1.00 1.00
Function<:[v0],Boolean>→Predicate<:[v0]> 14 11 3 11 0 1.00 1.00
Function<:[v0],Integer>→ToIntFunction<:[v0]> 18 22 5 21 1 1.00 1.00
Supplier<Integer>→IntSupplier 8 15 2 15 0 1.00 1.00
long→BigInteger 17 4 2 4 0 1.00 1.00
TemporaryFolder→File 9 34 2 14 8 1.00 0.54
long→Duration 10 15 4 14 1 1.00 1.00
long→Instant 7 13 13 13 0 1.00 1.00
long→AtomicLong 3 9 4 8 1 1.00 1.00
GetMethod→HttpGet 15 45 7 40 5 1.00 1.00
Log→Logger 424 300 6 295 5 1.00 1.00
ChannelBuffer→ByteBuf 39 59 12 32 15 1.00 0.93
DateTime→ZonedDateTime 283 256 25 249 3 1.00 0.98
CompositeSubscription→CompositeDisposable 9 33 10 28 5 1.00 1.00
n: Number of type change instances A: Number of type dependent idioms
UR: Number of unique rewrite rules applied TP: True Positives NA: Not

Applicable P: Precision R: Recall Note that n, A and the ratio n/A vary
based on the usage of the elements in the program

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Timofey Bryksin

of the type Channel from the context to replace the static method
invocation with instance method invocation.
1 - final ChannelBuffer buffer=ChannelBuffers.buffer (6)

2 + final ByteBuf buffer=channel.alloc ().buffer (6)

Capturing such edits will require comparing the changed
data/control-flow across the commit or reason about more source
code surrounding the applied edit. Previous researchers [4, 35, 60]
have developed techniques that can capture such context to perform
library migrations and bug fixes. It is unclear how to declaratively
express and apply them as rewrite rules.
(2) Additional knowledge about the types is required. We
found that adapting statements for certain type changes requires
deep understanding about the difference between the semantics of
the before and after type. These adaptations involve identifying the
mapping between the APIs, checking preconditions, and adapting
the current program to leverage the properties offered by the new
type. In this below example, the developer replaced the call to add

with a custom logic that added a new functionality to leverage the
constant time insertion that LinkedList offers via its addFirst and
addLast method. However, inferring the addition of new function-
ality as a rewrite rule is currently out of the scope of TC-Infer.

1 - List <String > ls

2 - ls.add(e);

3 + LinkedList <String > ls

4 + if (pred) ls.addFirst(e);

5 + else ls.addLast(e);

Similarly, we observed that when developers change type from List

to Set, they adapt the strategy that traverses the collection — from
iterating over the collection with an index to using the Iterator.
With latest developments in language server protocols this challenge
is surmountable.
(3) Additional inference is required. In many cases, only rea-
soning about the syntactic transformations is not enough, because
the adaptation also involves adapting the string literals. In the below
example, the literal is updated from “/status.txt” to “status.txt”,
because the resolve method internally resolves the file separator.
Program synthesis techniques for string manipulations can easily
overcome this challenge [21].
1 - File f = new File(projectFldr + "/ status.txt")

2 + Path f = projectFldr.resolve (" status.txt")

As an extreme case in this category we observed that when the type
change from StringBuilder to the new Java 8 type StringJoiner is
performed, the adaptation may require data flow and control flow
analysis to understand how the string is built, and then encoding
this into the StringJoiner API.

4.5 RQ4: Did developers find the

RewriteRules useful?

To answer this question, we perform popular type changes from
our corpus that are also recommended by Effective Java [6], us-
ing IntelliTC in four large open source projects: Apache Flink,
ElasticSearch, IntelliJ-Community and Cassandra. In partic-
ular, we perform type changes that eliminate the misuse of Java
8’s Functional Interface API, e.g., Supplier<Long>→LongSupplier and
Optional API, e.g., Optional<Integer>→OptionalInt (Items 44 & 61
from [6]). We obtain the required specifications for eliminating
these misuses from the rewrite rules collected in RQ1 (Section 4.2).

Finding any missed opportunity to specialize interfaces in such
projects is an important contribution because it eliminates boxing
(un-boxing), thus improving the performance.

IntelliTC performed 98 instances of type changes belonging
to 14 type change patterns that eliminate misuses of the Java 8
interfaces. These type changes updated 46 source code files and
affected 213 SLOC. After IntelliTC applied the type changes in
each project, we built it to ensure that the source code compiled
successfully and all test cases passed. For two type changes, we had
to manually perform edits to update the signature of overriding
methods (limitation of the current implementation). Next, we sent
out these type changes as pull requests to the maintainers of the
projects. At the time of writing the paper, two PRs containing 43
type changes were accepted, and the rest are still under review.

5 LIMITATIONS AND THREATS TO VALIDITY

(1) Preconditions: Balaban et al. [5] laid out the basic pre-
conditions for safely performing a type change involving inter-
changeable types (e.g., Vector→ArrayList). However, they are not
always enough. Dig et al. [10] proposed additional preconditions to
safely update HashMap to ConcurrentHashMap. While TC-Infer effec-
tively infers the rewrite rules for adapting the common syntactic
idioms, it does not infer preconditions for applying the rules. We
believe this is a very challenging problem that could be addressed
by capturing more context and analyzing dynamic traces. In our
proposed workflow, we tradeoff safety for broader applicability by
relying on the developer’s wisdom in determining whether it is
safe to update the type.
(2) Version Awareness: For safely suggesting and applying type
changes in the real-world, the rewrite rules should be version spe-
cific since types themselves evolve over time (API evoluton). This
limitation can be easily overcome by analyzing build system config-
uration files (like pom.xml and build.gradle) to identify the required
version of Java and other third party libraries.
(3) Language Independence: Currently TC-Infer is targetting
the Java language, however conceptually it is language independent
(note that Comby is also a multi-language syntax transformation
technique). The only language dependent modules are (a) Refac-
toringMiner and (b) GetTemplateFor (Definition 3.5). While
developing GetTemplateFor for other languages is straightfor-
ward, language-agnostic refactoring detection is also tractable. For
example, recently researchers Atwi et al. [3] reimplemented Refac-
toringMiner in Python to support the Python language accounting
for its dynamic nature, whereas Dilhara [11] proposed a technique
that Java-fies Python programs and enables Java based AST analysis
tools to process Python.
(4) External Validity: Do our results generalize? We studied 130
projects on Github from a wide range of application domain, mak-
ing the results of the study generalizable to other projects. Moreover,
the type changes we used for evaluating the applicability and the
effectiveness of our technique are diverse in nature (w.r.t. syntac-
tic category, name space or inter-operability). We show that the
produced rules can achieve high precision and recall.
(5) Internal Validity: Does our tool produce valid results? We
thoroughly evaluate the accuracy of the rewrite rules produced
by TC-Infer. To understand if the inferred rules can be trusted,

Inferring and Applying Type Changes ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

the authors manually validate the prevalent rules to identify non-
conforming ones. Moreover, we create an extensive setup that semi-
automatically validates the application of rewrite rules for a large
and diverse variety of type change patterns.
(6) Verifiability: The collected data, source code, and executable
of TC-Infer and IntelliTC are publicly available [52].

6 FUTUREWORK

As seen in Section 4.2, TC-Infer could infer at least one rule for
86% of the popular type changes applied in the open source Java
repositories. In Section 4.3, we replicate the type changes performed
by developers, and show that the rules produced by TC-Infer are
very effective (99.2% precision and 93.4% recall). While Section 4.4
shows that these applicable and effective rules should undergo
manual vetting, because they cannot be blindly trusted. For TC-
Infer to make impact in the real world it is important to reason
about (1) storing and accessing the inferred rules, (2) policies for
contributing new rules, and (3) maintainence of these rules.

We envision that our central database will contain two views:
(1) a general view that contains rules inferred for the common and
popular type changes performed in the version history of all the
participating projects, (2) a project-specific view that contains the
rules inferred for the type changes performed in the version history
of a particular project. This database can be continuously updated
with each new commit. Each rule will be associated with the exact
location in the version history where it was performed, along with
some confidence metrics based on the number of projects, commits
and developers who performed it. The users could also manually
submit new rules to the database and be able to upvote or downvote
rewrite rules based on their understanding of the APIs/operators
(i.e., community-driven confidence). The majority of type changes
in the project-specific view will be application specific type changes
that will be useful to the developers of the project and the other de-
pendent projects (in case of breaking changes). In case of competing
rules (i.e., same LHS, different RHS), the user can rank these rules
based on the community’s perspective and empirical evidence.

The most crucial aspect of maintaining and evolving rules is the
version awareness. To make the rules version aware, we could take
a conservative approach by annotating the rules with the versions
in the associated real world example. However, this will thoroughly
reduce the applicability of these type change rules. We believe we
need further research to infer if the rewrite rules are backward or
forward compatible. We believe human insight will be required to
maintain the quality of the rules. Therefore, our envisioned tool
leverages the community’s perspective and empirical evidence.

7 RELATEDWORK

(1) Program Transformation Systems: Researchers have pro-
posed an array of advanced program transformation systems and
impressive meta-programming languages: (a) JunGL [58] is an
ML-style functional programming language that facilitates AST
manipulation with higher order functions and tree matching,
(b) Refcola [54] is a constraint language where refactorings are
specified by constraint rules, (c) Wrangler [36] provides refactoring
commands to locate program elements and a DSL to execute the
commands in the context, (d) Rascal [22] is a scripting language

to execute Eclipse JDT refactorings, and (e) Error-Prone [20] is
a static analysis tool to catch and fix common programming mis-
takes at compile time. While these advanced systems can be used
to encode type changes, Kim et al. [32] have shown that encoding
refactorings in these domain specific languages has an unncessary
overhead and a steep learning curve (weeks to months). Other re-
searchers Balaban et al. [5], Ketkar et al. [30], Wright [59] have
developed frameworks specifically to perform type changes based
on input transformation specifications. In contrast to all these sys-
tems, the goal of our work is to remove the burden on the developers
to encode type changes in these DSLs.
(2) Inferring and Applying Edit patterns: Researchers have
proposed a plethora of techniques that can infer and apply a vari-
ety of edit patterns from commit-level changes and finer IDE-level
changes: (a) GetAFix [4], Revisar [51], and DeepDelta [42] infer
fixes for bugs and compilation errors from commit histories of the
project using clustering, anti-unification or deep learning tech-
niques, (b) Refazer [50] applies program synthesis to fix incorrect
student assignments, while BluePencil [44] learns repetitive code
changes on-the-fly in an IDE, (c) CPATMiner and Py-CPATminer[12]
identify the repetitive and frequent applied edit patterns in a code
reposiory (d) LibSync [47], A3 [35] and MEditor [60] infer the
adaptations required to perform library migration by analyzing the
changed control/data flow across the commit, (e) Kim et al. [33]
discover and represent systematic changes as logic rules with the
goal to enhance developer’s understanding about the program’s
evolution, and (f) Sydit [39], LASE [40], Repertoire [49] perform
systematic code changes by creating a context-aware edit script,
finding potential locations and transforming the code. In contrast
to these works, the TC-Infer deduces rewrite rules for adapting
common syntactic idioms and IntelliTC automates them in the
IDE.

8 CONCLUSIONS

Type change is a crucial activity in evolving code bases. While
performing type changes manually is tedious, using the current
state-of-the-art type change automation techniques is not straight-
forward because it requires the developer to encode the adapta-
tions in a DSL. This paper eliminates this burden on the developers.
We present TC-Infer that deduces the rewrite rules required to
perform the type change from the version history. We evaluate
the TC-Infer’s applicability for inferring rules for popular type
changes, and show the effectiveness of these rules at performing
3,060 instances of 60 diverse type change patterns. We also devel-
oped IntelliTC and applied it to eliminate 98 misuses of the Java
8 APIs in four large open source projects.

9 ACKNOWLEDGEMENT

We would like to thank Rijanrd van Tonder, Martin Erwig, Ali
Mesbah, the CUPLV group at CU Boulder and other anonymous
reviewers for their insightful and constructive feedback to improve
the work. This research was partially supported by NSF grants
CCF-1553741 and CNS-1941898, NSERC grant RGPIN2018-05095,
and by the Industry-University Cooperative Research Center on
Pervasive Personalized Intelligence.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Timofey Bryksin

REFERENCES

[1] Hussein Alrubaye, Deema AlShoaibi, Mohamed Wiem Mkaouer, and Ali Ouni.
2019. How Does API Migration Impact Software Quality and Comprehension?
An Empirical Study. (Jul 2019). https://arxiv.org/abs/1907.07724

[2] Apache. 2019. Netbeans Refactoring.
[3] H Atwi, B Lin, N Tsantalis, Y Kashiwa, Y Kamei, N Ubayashi, G Bavota, and M.

Lanza. SCAM. PyRef: Refactoring Detection in Python Projects. In SCAM, 2021.
https://doi.org/PyRef/PyRef

[4] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to Fix Bugs Automatically. Proc. ACM Program. Lang. 3, OOPSLA, Article
159 (Oct. 2019), 27 pages. https://doi.org/10.1145/3360585

[5] Ittai Balaban, Frank Tip, and Robert Fuhrer. 2005. Refactoring Support for Class
Library Migration. In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications (San Diego,
CA, USA) (OOPSLA ’05). ACM, New York, NY, USA, 265–279. https://doi.org/10.
1145/1094811.1094832

[6] Joshua Bloch. 2018. Effective Java (3 ed.). Addison-Wesley, Boston, MA. https://
www.safaribooksonline.com/library/view/effective-java-third/9780134686097/

[7] Marat Boshernitsan, Susan L. Graham, Susan L. Graham, and Marti A. Hearst.
2007. Aligning Development Tools with the Way Programmers Think About
Code Changes. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (San Jose, California, USA) (CHI ’07). ACM, New York, NY,
USA, 567–576. https://doi.org/10.1145/1240624.1240715

[8] Comby. 2021. Comby Syntax Reference. https://comby.dev/docs/syntax-reference
Accessed: 3 Sep 2021.

[9] Santanu Kumar Dash, Miltiadis Allamanis, and Earl T. Barr. 2018. RefiNym: Using
Names to Refine Types. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). ACM, New
York, NY, USA, 107–117. https://doi.org/10.1145/3236024.3236042

[10] Danny Dig, John Marrero, and Michael D. Ernst. 2009. Refactoring Sequential
Java Code for Concurrency via Concurrent Libraries. In Proceedings of the 31st
International Conference on Software Engineering (ICSE ’09). IEEE Computer
Society, Washington, DC, USA, 397–407. https://doi.org/10.1109/ICSE.2009.
5070539

[11] Malinda Dilhara. 2021. Discovering Repetitive Code Changes in ML Systems.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 1683–1685. https://doi.org/10.1145/3468264.3473493

[12] Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig. 2022. Discov-
ering Repetitive Code Changes in Python ML Systems. In International Confer-
ence on Software Engineering (Pittsburgh, United States) (ICSE ’22). ACM/IEEE.
https://doi.org/10.1145/3510003.3510225 To appear.

[13] Java Platform Documentation. 2019. Autoboxing and unboxing.
[14] Java Platform Documentation. 2019. StringBuffer.
[15] Java Platform Documentation. 2019. StringBuilder.
[16] Eclipse. 2019. Refactoring Actions.
[17] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin

Monperrus. 2014. Fine-grained and Accurate Source Code Differencing. In Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering (Vasteras, Sweden) (ASE ’14). ACM, New York, NY, USA, 313–324.
https://doi.org/10.1145/2642937.2642982

[18] S. R. Foster, W. G. Griswold, and S. Lerner. 2012. WitchDoctor: IDE support for
real-time auto-completion of refactorings. In 2012 34th International Conference on
Software Engineering (ICSE). 222–232. https://doi.org/10.1109/ICSE.2012.6227191

[19] Xi Ge, Quinton L. DuBose, and Emerson Murphy-Hill. 2012. Reconciling Manual
and Automatic Refactoring. In Proceedings of the 34th International Conference on
Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press, 211–221.

[20] Google. 2011. Error Prone. https://github.com/google/error-prone
[21] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets us-

ing Input-Output Examples. In PoPL’11, January 26-28, 2011, Austin, Texas,
USA. https://www.microsoft.com/en-us/research/publication/automating-
string-processing-spreadsheets-using-input-output-examples/

[22] Mark Hills, Paul Klint, and Jurgen J. Vinju. 2012. Scripting a Refactoring with
Rascal and Eclipse (WRT ’12). Association for Computing Machinery, New York,
NY, USA, 40–49. https://doi.org/10.1145/2328876.2328882

[23] Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu.
2016. On the Naturalness of Software. Commun. ACM 59, 5 (April 2016), 122–131.
https://doi.org/10.1145/2902362

[24] IntelliJ. 2021. IntelliJ Inplace Rename. https://www.jetbrains.com/help/idea/
rename-refactorings.html#inplace_rename Accessed: 3 Sep 2021.

[25] IntelliJ. 2021. IntelliJ Intention Actions. https://www.jetbrains.com/help/idea/
intention-actions.html Accessed: 3 Sep 2021.

[26] IntelliJ. 2021. IntelliJ Java Inspections. https://www.jetbrains.com/help/idea/list-
of-java-inspections.html#probable-bugs Accessed: 3 Sep 2021.

[27] IntelliJ. 2021. IntelliJ: Structural Search and Replace. https://www.jetbrains.com/
help/idea/structural-search-and-replace.html Accessed: 3 Sep 2021.

[28] JetBrains. 2019. Type Migration.
[29] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E. Hassan. 2016.

Logging Library Migrations: A Case Study for the Apache Software Foundation
Projects. In Proceedings of the IEEE/ACM 13th Working Conference on Mining
Software Repositories. 154–164. https://doi.ieeecomputersociety.org/10.1109/MSR.
2016.025

[30] Ameya Ketkar, Ali Mesbah, Davood Mazinanian, Danny Dig, and Edward Af-
tandilian. 2019. Type Migration in Ultra-large-scale Codebases. In Proceedings
of the 41st International Conference on Software Engineering (Montreal, Que-
bec, Canada) (ICSE ’19). IEEE Press, Piscataway, NJ, USA, 1142–1153. https:
//doi.org/10.1109/ICSE.2019.00117

[31] Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2020. Understanding Type
Changes in Java. Association for Computing Machinery, New York, NY, USA,
629–641. https://doi.org/10.1145/3368089.3409725

[32] Jongwook Kim, Don Batory, and Danny Dig. 2015. Scripting parametric refactor-
ings in Java to retrofit design patterns. In 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 211–220. https://doi.org/10.1109/
ICSM.2015.7332467

[33] Miryung Kim, David Notkin, Dan Grossman, and Gary Wilson. 2013. Identifying
and Summarizing Systematic Code Changes via Rule Inference. IEEE Transactions
on Software Engineering 39, 1 (Jan 2013), 45–62. https://doi.org/10.1109/TSE.
2012.16

[34] H. W. Kuhn. 1955. The Hungarian method for the as-
signment problem. Naval Research Logistics Quarterly 2,
1-2 (1955), 83–97. https://doi.org/10.1002/nav.3800020109
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800020109

[35] Maxime Lamothe, Weiyi Shang, and Tse-Hsun Peter Chen. 2020. A3: Assisting
Android API Migrations Using Code Examples. IEEE Transactions on Software
Engineering (2020), 1–1. https://doi.org/10.1109/TSE.2020.2988396

[36] Huiqing Li and Simon Thompson. 2012. A Domain-Specific Language for Script-
ing Refactorings in Erlang. In Fundamental Approaches to Software Engineering,
Juan de Lara and Andrea Zisman (Eds.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 501–515.

[37] Jun Li, ChenglongWang, Yingfei Xiong, and Zhenjiang Hu. 2015. SWIN: Towards
Type-Safe Java Program Adaptation Between APIs. In Proceedings of the 2015
Workshop on Partial Evaluation and ProgramManipulation (Mumbai, India) (PEPM
’15). ACM, New York, NY, USA, 91–102. https://doi.org/10.1145/2678015.2682534

[38] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. 2019.
Aroma: Code Recommendation via Structural Code Search. Proc. ACM Program.
Lang. 3, OOPSLA, Article 152 (Oct. 2019), 28 pages. https://doi.org/10.1145/
3360578

[39] Na Meng, Miryung Kim, and Kathryn S. Mckinley. [n.d.]. Sydit: Creating and
applying a program transformation from an example. In in ESEC/FSE’11, 2011.
440–443.

[40] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and
Applying Systematic Edits by Learning from Examples. In Proceedings of the 2013
International Conference on Software Engineering (San Francisco, CA, USA) (ICSE
’13). IEEE Press, 502–511.

[41] T. Mens and T. Tourwe. 2001. A declarative evolution framework for object-
oriented design patterns. In Proceedings IEEE International Conference on Software
Maintenance. ICSM 2001. 570–579. https://doi.org/10.1109/ICSM.2001.972774

[42] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.
2019. DeepDelta: Learning to Repair Compilation Errors. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019).
ACM, New York, NY, USA, 925–936. https://doi.org/10.1145/3338906.3340455

[43] Microsoft. 2021. Visual Studio. (2021). At https://www.visualstudio.com.
[44] Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo

Soares, Ashish Tiwari, and Abhishek Udupa. 2019. On the Fly Synthesis of Edit
Suggestions. Proc. ACM Program. Lang. 3, OOPSLA, Article 143 (Oct. 2019),
29 pages. https://doi.org/10.1145/3360569

[45] H. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran, and M. Hilton. 2019. Graph-
Based Mining of In-the-Wild, Fine-Grained, Semantic Code Change Patterns. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE
Computer Society, Los Alamitos, CA, USA, 819–830. https://doi.org/10.1109/
ICSE.2019.00089

[46] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen,
and Hridesh Rajan. 2013. A Study of Repetitiveness of Code Changes in Soft-
ware Evolution. In Proceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering (Silicon Valley, CA, USA) (ASE’13). IEEE Press,
180–190. https://doi.org/10.1109/ASE.2013.6693078

[47] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson Jr., Anh Tuan Nguyen,
Miryung Kim, and Tien N. Nguyen. 2010. A graph-based approach to API
usage adaptation. In Proceedings of the 25th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA. 302–321. https://doi.org/10.

https://arxiv.org/abs/1907.07724
https://doi.org/PyRef/PyRef
https://doi.org/10.1145/3360585
https://doi.org/10.1145/1094811.1094832
https://doi.org/10.1145/1094811.1094832
https://www.safaribooksonline.com/library/view/effective-java-third/9780134686097/
https://www.safaribooksonline.com/library/view/effective-java-third/9780134686097/
https://doi.org/10.1145/1240624.1240715
https://comby.dev/docs/syntax-reference
https://doi.org/10.1145/3236024.3236042
https://doi.org/10.1109/ICSE.2009.5070539
https://doi.org/10.1109/ICSE.2009.5070539
https://doi.org/10.1145/3468264.3473493
https://doi.org/10.1145/3510003.3510225
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/ICSE.2012.6227191
https://github.com/google/error-prone
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://doi.org/10.1145/2328876.2328882
https://doi.org/10.1145/2902362
https://www.jetbrains.com/help/idea/rename-refactorings.html#inplace_rename
https://www.jetbrains.com/help/idea/rename-refactorings.html#inplace_rename
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/list-of-java-inspections.html#probable-bugs
https://www.jetbrains.com/help/idea/list-of-java-inspections.html#probable-bugs
https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://doi.ieeecomputersociety.org/10.1109/MSR.2016.025
https://doi.ieeecomputersociety.org/10.1109/MSR.2016.025
https://doi.org/10.1109/ICSE.2019.00117
https://doi.org/10.1109/ICSE.2019.00117
https://doi.org/10.1145/3368089.3409725
https://doi.org/10.1109/ICSM.2015.7332467
https://doi.org/10.1109/ICSM.2015.7332467
https://doi.org/10.1109/TSE.2012.16
https://doi.org/10.1109/TSE.2012.16
https://doi.org/10.1002/nav.3800020109
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800020109
https://doi.org/10.1109/TSE.2020.2988396
https://doi.org/10.1145/2678015.2682534
https://doi.org/10.1145/3360578
https://doi.org/10.1145/3360578
https://doi.org/10.1109/ICSM.2001.972774
https://doi.org/10.1145/3338906.3340455
https://www.visualstudio.com
https://doi.org/10.1145/3360569
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1109/ASE.2013.6693078
https://doi.org/10.1145/1869459.1869486
https://doi.org/10.1145/1869459.1869486

Inferring and Applying Type Changes ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1145/1869459.1869486
[48] Marius Nita and David Notkin. 2010. Using Twinning to Adapt Programs to

Alternative APIs. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1 (Cape Town, South Africa) (ICSE ’10). ACM,
New York, NY, USA, 205–214. https://doi.org/10.1145/1806799.1806832

[49] Baishakhi Ray, Christopher Wiley, and Miryung Kim. 2012. REPERTOIRE:
A Cross-System Porting Analysis Tool for Forked Software Projects. In Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the Founda-
tions of Software Engineering (Cary, North Carolina) (FSE ’12). Association
for Computing Machinery, New York, NY, USA, Article 8, 4 pages. https:
//doi.org/10.1145/2393596.2393603

[50] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning Syntactic
Program Transformations from Examples. In Proceedings of the 39th International
Conference on Software Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE
Press, Piscataway, NJ, USA, 404–415. https://doi.org/10.1109/ICSE.2017.44

[51] Reudismam Rolim, Gustavo Soares, Rohit Gheyi, and Loris D’Antoni. 2018. Learn-
ing Quick Fixes from Code Repositories. (2018). http://arxiv.org/abs/1803.03806

[52] Oleg Smirnov, Ameya Ketkar, Timofey Bryksin, Nikolaos Tsantalis, and Danny
Dig. 2021. IntelliTC: Automating Type Changes in IntelliJ IDEA. https://type-
change.github.io/index.html Accessed: 10 Feb 2022.

[53] Oleg Smirnov, Ameya Ketkar, Timofey Bryksin, Nikolaos Tsantalis, and Danny
Dig. 2022. IntelliTC: Automating Type Changes in IntelliJ IDEA. In 44th In-
ternational Conference on Software Engineering Companion (ICSE ’22 Compan-
ion) (Pittsburgh, United States) (ICSE ’22 Companion). ACM/IEEE. https:
//doi.org/10.1145/3510454.3516851

[54] Friedrich Steimann, Christian Kollee, and Jens von Pilgrim. 2011. A Refactoring
Constraint Language and Its Application to Eiffel. In ECOOP 2011 – Object-
Oriented Programming, Mira Mezini (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 255–280.
[55] Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc. 2014. A Study

of Library Migrations in Java. J. Softw. Evol. Process 26, 11 (Nov. 2014), 1030–1052.
https://doi.org/10.1002/smr.1660

[56] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2020. RefactoringMiner 2.0.
IEEE Transactions on Software Engineering (2020), 1–21. https://doi.org/10.1109/
TSE.2020.3007722

[57] Rijnard van Tonder and Claire Le Goues. 2019. Lightweight Multi-Language
Syntax Transformation with Parser Parser Combinators. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New
York, NY, USA, 363–378. https://doi.org/10.1145/3314221.3314589

[58] Mathieu Verbaere, Arnaud Payement, and Oege de Moor. 2006. Scripting refac-
torings with JunGL. In Companion to the 21th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2006, October 22-26, 2006, Portland, Oregon, USA, Peri L. Tarr and William R. Cook
(Eds.). ACM, 651–652. https://doi.org/10.1145/1176617.1176656

[59] Hyrum K. Wright. 2020. Incremental Type Migration Using Type Algebra. In 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME).
756–765. https://doi.org/10.1109/ICSME46990.2020.00085

[60] Shengzhe Xu, Ziqi Dong, and Na Meng. 2019. Meditor: Inference and Applica-
tion of API Migration Edits. In Proceedings of the 27th International Conference
on Program Comprehension (Montreal, Quebec, Canada) (ICPC ’19). IEEE Press,
Piscataway, NJ, USA, 335–346. https://doi.org/10.1109/ICPC.2019.00052

[61] Guangtun Zhu. 2016. A New View of Classification in Astronomy with the
Archetype Technique: An Astronomical Case of the NP-complete Set Cover
Problem. arXiv:1606.07156 [astro-ph.IM]

https://doi.org/10.1145/1869459.1869486
https://doi.org/10.1145/1806799.1806832
https://doi.org/10.1145/2393596.2393603
https://doi.org/10.1145/2393596.2393603
https://doi.org/10.1109/ICSE.2017.44
http://arxiv.org/abs/1803.03806
https://type-change.github.io/index.html
https://type-change.github.io/index.html
https://doi.org/10.1145/3510454.3516851
https://doi.org/10.1145/3510454.3516851
https://doi.org/10.1002/smr.1660
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/3314221.3314589
https://doi.org/10.1145/1176617.1176656
https://doi.org/10.1109/ICSME46990.2020.00085
https://doi.org/10.1109/ICPC.2019.00052
https://arxiv.org/abs/1606.07156

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Technique
	3.1 Basic Concepts
	3.2 Input
	3.3 Output
	3.4 TC-Infer
	3.5 Comparison with Previous Work

	4 Evaluation
	4.1 Dataset
	4.2 RQ1: How applicable is TC-Infer?
	4.3 RQ2: Can we trust the existing practices for performing type changes?
	4.4 RQ3: How effective are the RewriteRules for performing type changes?
	4.5 RQ4: Did developers find the RewriteRules useful?

	5 Limitations and Threats to Validity
	6 Future Work
	7 Related Work
	8 Conclusions
	9 Acknowledgement
	References

