
Discovering Repetitive Code Changes in Python ML Systems
Malinda Dilhara

malinda.malwala@colorado.edu
University of Colorado Boulder

USA

Ameya Ketkar∗
ketkara@uber.com

Uber Technologies Inc.
USA

Nikhith Sannidhi
nikhith.sannidhi@colorado.edu
University of Colorado Boulder

USA

Danny Dig
danny.dig@colorado.edu

University of Colorado Boulder
USA

ABSTRACT

Over the years, researchers capitalized on the repetitiveness of soft-
ware changes to automate many software evolution tasks. Despite
the extraordinary rise in popularity of Python-based ML systems,
they do not benefit from these advances. Without knowing what
are the repetitive changes that ML developers make, researchers,
tool, and library designers miss opportunities for automation, and
ML developers fail to learn and use best coding practices.

To fill the knowledge gap and advance the science and tooling
in ML software evolution, we conducted the first and most fine-
grained study on code change patterns in a diverse corpus of 1000
top-rated ML systems comprising 58 million SLOC. To conduct
this study we reuse, adapt, and improve upon the state-of-the-art
repetitive change mining techniques. Our novel tool, R-CPatMiner,
mines over 4M commits and constructs 350K fine-grained change
graphs and detects 28K change patterns. Using thematic analysis,
we identified 22 pattern groups and we reveal 4 major trends of how
ML developers change their code. We surveyed 650 ML developers
to further shed light on these patterns and their applications, and
we received a 15% response rate. We present actionable, empirically-
justified implications for four audiences: (i) researchers, (ii) tool
builders, (iii) ML library vendors, and (iv) developers and educators.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;
• Computing methodologies→Machine learning.

KEYWORDS

Refactoring, Repetition, Code changes, Machine learning, Python

ACM Reference Format:

Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig. 2022.
Discovering Repetitive Code Changes in Python ML Systems. In 44th In-

ternational Conference on Software Engineering (ICSE ’22), May 21–29, 2022,

Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3510003.3510225

∗Ameya Ketkar contributed this work as a research assistant at Oregon State University.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510225

1 INTRODUCTION

Many software changes are repetitive by nature [7, 33, 53], thus
forming change patterns. Like in traditional software systems, Ma-
chine Learning (ML) developers perform repetitive code changes
too. For example, Listing 1 shows a common change where ML
developers replaced a for loop that sums the list elements with
np.sum, a highly optimized domain-specific abstraction provided
by the libraryNumPy [61]. Since this change involves programming
idioms [2, 80] at the sub-method level it is fine-grained. If this code
change is repeated at multiple locations or in multiple commits, it
is a fine-grained code change pattern.

Listing 1: Commit c8b28432 in GitHub repository

NifTK/NiftyNet: Replace for loop with NumPy sum

1 -for elem in elements:
2 - result += elem
3 +result = np.sum(elements)

Over the years, researchers in the traditional software systems
have provided many applications that rely upon the repetitiveness
of changes: code completion in the IDEs [13, 34, 43, 55, 56], auto-
mated program repair [6, 9, 50], API recommendation [32, 55], type
migration [40], library migration [3, 18, 24, 39, 84], code refactor-
ing [19, 28], fine-grained understanding of software evolution [3,
25, 42, 54, 58, 77, 85]. Unfortunately, these are mostly available only
for Java, and do not support Python and ML systems.

Researchers [11, 22, 37, 70] observed that Python dominates the
ML ecosystem in both the company-driven and the community-
driven ML software systems, yet the tooling is significantly be-
hind [22, 91]. In order to advance the science and tooling for ML
code development in Python, we need to understand how devel-
opers evolve and maintain ML systems. Previous researchers have
focused on high-level software evolution tasks like identifying ML
bugs [35, 37, 38], updating ML libraries [22], refactoring and techni-
cal debt of ML systems [75, 82], managing version control systems
for data [8], and testing [10, 31, 36]. However, there is a lack of un-
derstanding of the repetitive fine-grained code change patterns that
ML developers laboriously perform. What are fine-grained changes

performed in ML systems? Which ones are ML-specific? What kinds

of automation do ML developers need?

Without answers to such questions, researchers miss opportu-
nities to improve the state-of-the-art in automation for software
evolution in ML systems, tool builders do not invest resources
where automation is most needed, language and library designers

https://doi.org/10.1145/3510003.3510225
https://doi.org/10.1145/3510003.3510225
https://doi.org/10.1145/3510003.3510225


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig

cannot make informed decisions when introducing new constructs,
and ML developers fail to learn and use best practices.

In this paper, we conduct the first large-scale study and discover
repetitive change patterns in Python-based ML systems. We em-
ploy both quantitative (mining repositories and thematic analysis)
and qualitative methods (surveys) to answer the research ques-
tions. Blending these methods has the advantage of the results
being triangulated. The quantitative methods help us discover what
fine-grained change patterns ML developers perform. The quali-
tative method helps us answer why these changes are performed,
how they are performed, and how tool builders can improve ML
developer productivity.

For the quantitative analysis, we use a large data set of 1000 ML
projects from GitHub, comprising 58 million source lines of code
(SLOC) at the latest revisions, 1.16 million mapped code blocks, 1.5
million changed files, and 0.4 billion changed SLOCs. We extracted
28,308 fine grained code change patterns where 58% of them appear
in multiple projects. We applied thematic analysis [12, 88] upon
2,500 most popular patterns from our dataset, and categorized them
into 22 fine-grained change pattern themes that reveal 4 major
trends. Moreover, we designed and conducted a survey with 650
ML developers, in which we presented 1,235 patterns for their feed-
back and achieved a 15% response rate. In the survey, 71% of the
developers confirmed the need of automation for 22 pattern groups.
Among these, we discovered four major trends: (1) transform to

Context managers (e.g., disable or enable gradient calculation, swap
ML training device), (2) convert for loops to domain specific ab-

straction (e.g., see Listing 1), (3) update API usage (e.g., migrate to
TensorFlow.log from log, transform matrices), and (4) use ad-
vanced language features (e.g., transform to list comprehension).

The main challenge in conducting such large-scale, representa-
tive studies, is the lack of tools for mining non-Java repositories.
To overcome this challenge we reuse, adapt, and extend the vast
ecosystem of Java AST-level analysis tools [3, 25, 42, 54, 58, 77, 85] to
Python. Most of these tools rely on techniques that are conceptually
language-independent, i.e., they operate on intermediate represen-
tation of the code (e.g., AST nodes). Second, we observed that 72%
of the Python AST node kinds identically overlap with those in
Java (e.g.,While-Statment, Assignment-Statement, etc.). Moreover,
another 18% of Python AST node kinds also exist in Java with some
differences (e.g., Python’s for loop has multiple loop variables).
Only 10% of the Python AST node kinds are unique to Python (e.g.,
With statement, Generators, etc.). Hence, one of our key ideas is
to reuse the Java AST-level analysis tools to analyse 72% of the
Python AST nodes and for the remaining 28% of AST nodes we
either modify existing capabilities or add brand new ones.

We first developed a novel technique, JavaFyPy, to transform
PythonAST to a format that can be processed by Java AST-level min-
ing tools. We used JavaFyPy to adapt to Python the state-of-the-art
fine-grained change pattern mining tool, CPatMiner [58]. CPat-
Miner matches changed methods and their body statements across
the commits and identifies fine-grained change patterns. Refactor-
ings such as move, rename, and extract method, re-arrange and
obfuscate the code statements, that are hard to match across the edit,
leading CPatMiner to miss multiple occurrences of patterns. To
improve the accuracy of CPatMiner, we integrate it with the state-
of-the-art refactoring mining technique- RefactoringMiner [85],

that de-obfuscates the re-arranged code statements. Our novel tool
R-CPatMiner performs refactoring-aware, fine-grained change pat-
tern mining in the commit history of Python systems.

Our findings and tools have actionable implications for several
audiences. Among others, they (i) advance our understanding of
repetitive changes that the ML developers perform which helps
the research community to improve the science and tools for ML
software evolution, (ii) provide a rich infrastructure to automate
and significantly extend the scope of existing studies on ML sys-
tems [37, 38, 75], (iii) help tool builders comprehend the ML devel-
opers’ struggles and desire for automation, (iv) provide feedback to
language and API designers when introducing new ML constructs,
and (v) assist educators in teaching ML software evolution.

This paper makes the following contributions:
(1) To the best of our knowledge, we conducted the first and the
largest study on fine-grained 28,308 code change patterns on ML
systems. We identified code changes patterns. We applied thematic

analysis on 2,500 most popular patterns and categorized them into
22 fine-grained change pattern themes that reveal 4 major trends.
(2) We designed and conducted a survey with 650 open-source ML
developers to provide insights about the reasons motivating those
changes, the current practices of applying those changes, and their
recommendation for tool builders.
(3) We developed novel tools to collect fine-grained change pat-
terns applied in the evolution history of Python-based ML systems.
We applied these tools on 1000 open-source projects hosted on
GitHub. We make the collected information and tooling publicly
available for reuse [21] so that we enable further research.
(4) We present an empirically-justified set of implications of our
findings from the perspective of four audiences: researchers, tool
builders, language designers, and ML developers.

2 MOTIVATING EXAMPLE

Listing 2: Specifies the device (CPU) for operations executed

in the context andmovemethod _init_model to parent class

1 class _FERNeuralNet():
2 + def _init_model(self):
3 + with tf.device(’/cpu:0’):
4 + B, H, T, _ = q.get_shape().as_list()
5 ...
6 class TimeDelayNN(_FERNeuralNet):
7 - def _init_model(self):
8 - B, H, T, _ = q.get_shape().as_list()

The code change shown in Listing 2 specifies the hardware device
using tf.device() (line 3) for the TensorFlow operation in line
4. tf.device() is a Context Manager [64] from the ML library,
TensorFlow. This is a fine-grained code change and the developer has
interleaved this with a Pull up Method refactoring that pulls _init_-
model from TimeDelayNN into the parent class _FERNeuralNet.

Is specifying hardware device for TensorFlow operations a pat-
tern? How frequent is this pattern? Do developers need tool support
to recommend and automate this code change pattern? We consider
this fine-grained code change instance a repeated pattern if a similar
code change was performed in the history of this project or any
other project. Researchers have proposed advanced techniques to
mine such fine-grained change patterns from the commit histo-
ries [58, 59]. However, these techniques are inapplicable to mine



Discovering Repetitive Code Changes in Python ML Systems ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Python code Python parser
(Jython)

Type
augmenter

Syntax
transformer

Customized Eclipse
JDT Java parser

Mining
Algorithm

Eclipse JDT
Java parser
Design of Java
AST analysis tools Design of JavaFyPy

ASTAST

2

1

Figure 1: Design of JavaFyPy and existingAST analysis tools

the fine-grained code change patterns shown in Listing 2 because (1)
their techniques mine code change patterns for Java, and (2) they
do not account for overlapping refactorings.

Researchers [51, 52, 78] have shown that developers often in-
terleave many programming activities such as bug fixes, feature
additions, or other refactoring operations, and often these changes
overlap [54] (as shown in Listing 2). Such overlapping changes
and refactorings can easily obfuscate existing fine-grained change
pattern mining tools [58, 59] because they do not account for these
changes whenmatching code across the commit. For example, CPat-
Miner [58] does not match the method body of _init_model in
the class _FERNeuralNet (lines 3–4) to the body of _init_model
in the class TimeDelayNN (line 7) as they are in different locations
and different files. This lack of refactoring awareness is a serious lim-
itation of existing pattern mining algorithms because they can miss
several concrete instances of change patterns that are obfuscated
by overlapping refactorings.

Re-implementing the existing Java AST mining tools for Python
will require a significant amount of development effort. It is also
neither feasible nor sustainable as researchers are continuously
implementing new Java AST mining tools or improving existing
tools. For this purpose, we propose JavaFyPy, a technique to adapt
existing Java AST mining tools to Python that leverages the simi-
larity between the Java and Python abstract syntax trees (AST). We
use JavaFyPy to adapt the state-of-the-art fine-grained change pat-
tern mining tool, CPatMiner [58], to Python. To make CPatMiner
refactoring aware, we adapt the state-of-the-art Java refactoring in-
ference tool, RefactoringMiner [85] (known as RMiner), to Python
and integrate it with CPatMiner as R-CPatMiner. Particularly,
the code-block mapping pairs (i.e., two versions of the same code-
block in a method before and after the change) reported by RMiner
are provided as input to CPatMiner. R-CPatMiner mines change
patterns in Python software systems in a refactoring-aware manner.

3 TECHNIQUE

Most of the current code change mining tools (i.e. ASTmining tools)
are conceptually language-independent because they operate upon
the abstract syntax trees (AST) only. However, their implementation
is bound only to Java. To overcome this practical implementation
limitation, we propose a very pragmatic solution - JavaFyPy, a
technique that transforms the input Python program to an AST
that can be processed by the mining algorithm of existing Java
AST analysis tools. JavaFyPy will fast-track researchers and tool
builders by making the AST-based mining tools implemented for
Java programs applicable for Python programs. Thus, it will save
several development-hours of work required for re-implementing
these techniques. As shown in 1 in Figure 1, JavaFyPy takes a

Python code as an input and produces an AST, that can be used
in mining algorithms of Java AST analysis tools. To achieve this,
JavaFyPy first transforms the Python code to AST and enriches the
AST by augmenting type information. Then, the Syntax transformer

maps the corresponding Java concrete syntax to the AST nodes. The
Java parser (Eclipse JDT) uses it to produce the final AST. Eclipse
JDT is the most popular Java parser used in AST mining research
tools. Therefore, we selected Eclipse JDT as the parser that produces
the final AST. This enhanced and enriched AST can be processed by
the mining algorithms of Java AST analysis tools. Tool builders and
researchers can use JavaFyPy, and extend their tools for Python.

3.1 Python code transformation

As shown in Figure 2 JavaFyPy first parses the input Python pro-
gram to an AST. We define an AST as:

Definition 3.1. (AST) Let T be an AST. T has one root. Each node
Ni ∈ T has a parent (except the root node). Each node (Ni ∈ T)
has a sequence of child nodes (denoted by CNi ). Number of nodes
in the sequence CNi is denoted by LengthCNi

. Each node Ni is
a specific syntax category known as AST node kind, KindNi =
{Assignment Statement, For statement,Method Invocation . . . }.

We leverage the syntactic similarity between Python and Java
to adapt the Java AST analysis tools to Python. We thoroughly
studied the Java and Python language specifications [62, 67] and
mapped the Python AST node kinds to those in Java based on the
description in the specifications.

Definition 3.2. (Mapped AST node) Let Tj be a Java AST and
Tp be a Python AST. Nj ∈ Tj,Np ∈ Tp. We state that Nj and Np
are mapped AST node kind, if Nj and Np maintain a structural
similarity. Mapped node of node Np is denoted byM(Np) = Nj.

We found three kinds of mappings namely, Identical AST node,
Nearly identical AST node, and Unique AST node.

Definition 3.3. (Identical AST node) Let CNj be a sequence of
child AST nodes of a parent Java node Nj and CNp be a sequence
of child AST nodes of a Python node Np. We state that Nj and Np
are identical AST nodes if (i) M(Np) is Nj, and (ii) ∀Ni ∈ CNp :
M(Np) ∈ CNj .

(1) Identical AST node (Definition 3.3) - 72% of the Python’s AST
node Kinds can be identically mapped to a Java’s AST Node. For
example, we mapped Python’s If to Java’s If Statement and mapped
Python’s Assign to Java’s AssignmentStatement.

Definition 3.4. (Nearly Identical AST node) We state that Nj and
Np as nearly identical AST nodes, if Nj and Np meets conditions:
(i) M(Np) is Nj, and (ii) ∃Ni ∈ CNp : M(Ni) ∉ CNj .

(2) Nearly identical AST node (Definition 3.4) - 18% of Python’s
AST Node kinds could be partially mapped to those of Java. For
instance, both Python and Java provide the for construct to iterate
over a collection, however unlike Java, Python allows to iterate
over multiple variables (see the for loop in Figure 2), thus AST of
Python for loop contains additional child AST node kinds.

Definition 3.5. (Unique AST node) Let Np be a Python AST node.
We state that Np is unique to Python, if there is no mapped AST
node in Tj. i.e., (M(Np) ∉ Tj).



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig

for x, y in iter:

z = x + y

yield z

Python AST

For Statement

Expression (iter)
Block

Expression (y)

Expression (x)

Assignment statement (x=x+y) Yield Statement

Variable Declaration (int x))

Variable Declaration (int y)

for (int x,int y:iter){

z = x+y;

yield z;

}

For Statement

Expression (iter)
Block

Assignment statement (x=x+y) Yield Statement

Coustomized
JDT Parser

Type augmented Python AST Transformed Code

Figure 2: An example Code transformation performed by JavaFyPy

(3) Unique AST node - 10% of the Python nodes had no Java coun-
terpart. For instance, Java does not support list comprehensions
or yield statement (as shown in Figure 2)

As we can observe, Java and Python syntax significantly overlaps.
As shown in 2 in Figure 1, AST mining tools like CPatMiner and
RMiner parse the input program to Eclipse JDT AST. To adapt their
tools to Python with JavaFyPy, tool builders or researchers simply
need to migrate their Java parser to our technique (JavaFyPy). After
that, we can simply reuse tools’ AST-based mining algorithms to
analyse 72% of the Identical AST node kinds, and modify the current
implementation to accommodate the 18% Nearly identical AST node

kinds and add brand-new capabilities (often involving adding new
visitors) for handling the 10% Unique AST node kinds. After the
changes, the tools take Python code as an input and infer the results,
thus adapting Java AST mining tools to Python.

Figure 2 shows an example of the code transformation steps
(shown in Figure 1) that JavaFyPy performs automatically. The
Python code snippet in Figure 2 contains all three AST node kinds:
Identical AST node (z = x + y), Nearly identical AST node (for
loop), and Unique AST node (yield z). The Java parser first con-
structs the AST of the code snippet, then the Type Augmenter aug-
ments theASTwith type information by addingVariable Declaration
nodes. This step is important because the Java-based AST mining
tools [58, 85] rely on the syntactic richness that the Java language
offers. Unlike Python, Java programmers have to explicitly declare
the types of variables, fields and methods. To add this syntactic
richness to the input program, JavaFyPy augments the AST of the
input program with type information (shown in Figure 2 as red
nodes). We obtain the type information from PyType [30], the state-
of-the-practice type inference tool for Python developed by Google,
which is widely adopted by the Python community. As the last step,
Syntax Transformer transforms the AST to code and passes it to
our customized Eclipse JDT parser which we extended to parse
Nearly identical AST node kinds and Unique AST node kinds.

Can JavaFyPy effectively transform all Identical, Nearly Identical,

and Unique AST node kinds? We evaluated this empirically with
14 popular Python projects including TensorFlow, PyTorch, Keras,
NLTK, Scikit learn, Scipy, and NumPy that comprise 23K Python
files and 2.9M SLOC. We checked whether all AST nodes, i.e., Iden-
tical AST nodes, Nearly identical AST nodes and Unique AST nodes

were successfully mapped and transformed to the output AST of
JavaFyPy. We achieved this by transforming all of the Python files
in the projects, which had 12M Python AST nodes. This confirms
that JavaFyPy can effectively transform any input Python program
to an Eclipse JDT AST format.

3.2 Refactoring Aware Change Pattern Mining

3.2.1 Adapting CPatMiner. CPatMiner [58] is the state-of-the-
art code change pattern mining tool that uses an efficient graph-
based representation of code changes to mine previously unknown
fine-grained changes from git commit history. It iterates over changed
methods in each commit and uses Eclipse JDT Java parser [27]
to generate an AST of Java source code. Then, its mining algo-
rithm builds program-dependence graphs for each AST node in-
dependently and then merges the graphs to create one big graph,
called change graph. CPatMiner builds change graphs for each
changed method, and it represents the before and after a source
code change that can be used to mine code change patterns. Since
72% of the Python AST node kinds overlap identically with those
in Java, we reused most of the capabilities for building the change
graphs.We added new capabilities in CPatMiner to create program-
dependence graphs for Unique AST nodes, and modified the existing
capabilities of Nearly identical AST nodes. Overall, we extended
CPatMiner with 2% extra code lines due to the new or modified
capabilities, and reused the rest of the code. While this ratio might
be different when adapting other tools, it showcases the merit of
JavaFyPy to reuse Java AST-based mining tools for Python.

3.2.2 IntroducingRefactoringAwareness. As discussed in Sec-
tion 2, CPatMiner [58] does not account for the overlapping refac-
torings applied in the commit. These refactorings move code blocks
between methods or change the method signature, making it hard
to match the changed code blocks. Thus missing the opportunities
to build change graphs for the obfuscated changes. To overcome this,
we made the CPatMiner refactorings aware by integrating it with
RMiner [85]. We used JavaFyPy to adapt RMiner and use it to de-
tect 18 refactoring kinds that move code blocks. RMiner uses AST-
based statement matching algorithm to match classes, methods, and
statements insidemethod bodies, thus helping usmatchmoved code
blocks. We consult the authors of RMiner and extend its statement
matching algorithm to reason about the Unique and Nearly identical
AST Node kinds. For example, Listing 3 shows a variable rename
refactoring in List Comprehension, a Python Unique AST node kind
of the project "Deepmedic" detected by Python-adapted RMiner.

Listing 3: Commit 8d4be555 in DeepMedic: Variable rename

in List Comprehension detected by Python-adapted RMiner

1 - indices = [layerNum - 1 for layerNum in layers_norm]
2 + indices = [layer_num - 1 for layer_num in layers_norm]

We use Python adapted RMiner to accurately match the moved
code blocks. We extended CPatMiner to build change graphs for
the code block pairs reported by RMiner. Hence, CPatMiner no
longer misses obfuscated code-blocks that contain fine-grained
changes. We developed the tool R-CPATMiner, to efficiently and



Discovering Repetitive Code Changes in Python ML Systems ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

accurately mines source code change patterns in the version histo-
ries of Python software systems, in a refactoring-aware manner.

4 RESEARCH METHODOLOGY

We prefix all the adapted tool names with Py to disambiguate the
tool names from their Java counterparts. We first evaluate the effec-
tiveness of the tools we developed (or adapted). Then, we use our
reliable and validated tools , to explore the repetitive code changes
applied in Python ML Systems. For this purpose, we answer three
research questions:
RQ1. What are the frequent code change patterns in ML code, and

what patterns need automation? To answer this research question,
we triangulate complementary empirical methods, as shown in Fig-
ure 3. (i) We mined 1000 repositories using R-CPatMiner and
extracted 28,308 patterns, (ii) We applied thematic analysis on 2,500
patterns, (iii) We sent a survey to 650 ML developers to seek their
opinion on automating the identified code change patterns.
RQ2. How does the refactoring awareness improve the patternmining

over the baseline CPatMiner? R-CPatMiner performs refactoring
aware change pattern mining, thus improving baseline CPatMiner.
Compared to CPatMiner, does R-CPatMiner extract (i) more
change graphs? (ii) more code change patterns? and (iii) more code
instances per pattern?
RQ3. What is the runtime performance of R-CPatMiner, PyCPat-

Miner, and PyRMiner? To answer this, we compare the execution
time of the Python adapted tools with their Java counterparts.

R-CPATMiner1000 ML 
projects

Change 
patterns

Automation 
suggestions for 

tool builders

Thematic 
analysis

Change patterns
for the survey

Online 
survey

Figure 3: Schematic diagram of the researchmethodology to

answer RQ3

4.1 Subject systems

Our corpus consists of 4,166,520 commits from 1000 large, mature,
and diverse ML application systems, comprising 58M lines of source
code and 150K Python files, used by other researchers [22] to un-
derstand the challenges of evolving ML systems. This corpus [22] is
shown to be very diverse from the perspective of Python files, LOC,
contributors, and commits. They vary widely in their domain and
application, include a mix of frameworks, web utilities, databases,
and robotics software systems that use ML. Further we added low-
level ML libraries [10] such as Scipy, SpaCy, and high-level ML
libraries [10] such as Keras, PyTorch, Caffe, NLTK, and Theano to
our subject systems. This ensures our dataset is representative and
large enough to answer our research questions comprehensively.

4.2 Static Analysis of Source Code History

4.2.1 Change pattern identification: Running R-CPatMiner
on the ML corpus extracted 28,308 unique code change patterns,
where 58% of them have code change instances in multiple projects,
63% of them have been performed by multiple authors.

Since the mined patterns are numerous, we followed the best
practices from Negara et al. [53]. They ordered the patterns along
three dimensions - by frequency of the pattern (F), by the size of the
pattern (S), and by F × S. Since the repetitive changes done by sev-
eral developers and projects are stable [59] and have a higher chance
of being automated, we also considered the number of projects and
authors as extra two dimensions. Then we ordered the mined pat-
terns along all five dimensions. Then, two of the authors who have
more than three years of professional software development ex-
perience and extensive expertise in software evolution, manually
investigated the top 500 patterns for each of the five dimensions
and identified meaningful code patterns, i.e., the patterns that can
be described as high-level program transformations.

Two authors of the paper manually analyzed each change pat-
tern, to identify the high-level programming task performed in
the change patterns. Following the best practices guidelines from
the literature, the authors used negotiated agreement technique
to achieve agreement [14, 88]. Two authors of the paper indepen-
dently coded the change patterns carefully and assigned one ormore
descriptive phrases (i.e., codes) to the patterns. Both authors con-
ducted the initial meeting after coding around 25% of the data (the
suggested minimum size is 10% [14]). During the meeting, the au-
thors carefully discussed the coding process of all the patterns. Also,
they negotiated any disagreements between the assigned codes and
the patterns that cannot be described as high-level program trans-
formations. After 80% inter-coder agreement was achieved (rec-
ommended inter-coder agreement level ranges from 70% to more
than 90% in the literature [14]), the two authors independently
coded the remaining change patterns. This process identified all
the patterns for which the two authors were able to agree upon the
underlying meaning of the pattern. After the coding finished, the
authors held another meeting in order to finalize the codes and ex-
tract themes. Themes capture something important about the data
in relation to the meaning of the pattern. It also represents some
level of patterned response or meaning within the data set [12]. The
two authors reviewed the initial themes against the data several
times and refined their names and definitions until they both agreed
that there were no further refinements possible. We identified four
trends (themes) of patterns based on their structural similarity at
the statement and expression level, namely (i) transform to Con-

text managers, (ii) convert for loops to domain specific abstraction,
(iii) update API usage, and (iv) use advanced language features.

4.3 Qualitative Study

Themost reliable way to understand the motivations and challenges
associated with repetitive code changes is to ask the developers
who performed them. To achieve this, we surveyed 650 developers
who performed the identified change patterns.

4.3.1 Contacting the developers: We contacted the developers
performing repetitive code changes that we considered worthy of
further investigation by sending an email to the addresses provided
in their GitHub account. The body of each email message was auto-
matically generated by the application we developed, and included
the following information:
• Introduction to the research team and the purpose of the study.
• A plot of number of repetitive changes done in the project.



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig

• A link to the frequent repetitive changes done in the respective
project so that the developer can use it as an educational resource.

• The following four questions for the developer:
Q1. What are the reasons for performing the code changes above?
Q2. How often do these code changes happen in ML codes?
Q3. Howoften have youmanually performed this kind of change?
Q4. Would you like to have this change automated by a tool?

The first question aims at discovering actual motivations behind
a code change as expressed by the developers themselves. The
second question focuses on the frequency of performing the code
change on ML codes, and it helps to examine the need for ML-
specific IDEs tools. The last three questions aim at understanding
whether developers trust and use tool support for performing the
code changes. This is important, as there is relatively low IDE
support for performing code changes inML codes [22, 91]. A sample
email is available on the companion website [21].

In total, we sent 650 emails to developers, out of which 97 re-
sponded, bringing us to a 15% response rate. This is significantly
higher than the usual response rate achieved in questionnaire-based
software engineering surveys, which is around 5% [79].

5 RESULTS

5.1 Repetitive changes in ML systems (RQ1)

5.1.1 Characteristics of patterns mined by R-CPatMiner. We ex-
ecuted R-CPatMiner on our corpus described in Section 4.1 con-
taining 1.5M changed source code files, comprising of over 490M
lines of source code. For these changed files R-CPatMiner pro-
duced 349,406 change graphs with a total of 4.7M nodes. The tool
extracted 28,308 unique code change patterns, where 63% and 58%
of them are performed by multiple authors and in multiple projects,
respectively. Figure 4 shows the degree of sharing of the patterns
amongst developers and projects. We observed that 53% of the de-
velopers who performed the code change patterns share 100% of
their change patterns with other developers, 79% share at least 50%
of their patterns with others, and 91% share at least 10% of the
patterns. Moreover, 36% of the projects share 100% of their patterns
with other projects, 60% of them share at least 50% of their patterns
with others, 91% of the projects share at least 10% of the patterns.
This shows that R-CPatMiner extracts patterns that are pervasive
amongst the developers and projects.

Number of authors (log scale)

2

1 3

17

(a) Developers

Number of projects (log scale)

2

1 3

16

(b) Projects

Figure 4: Degree of sharing of patterns amongst developers

and projects

5.1.2 Discovering pattern trends. Understanding code change pat-
terns that the ML developers perform is important to advance sci-
ence and tooling in ML software evolution. Our thematic analysis
and developer surveys reveal 22 previously unknown repetitive
change patterns groups where the developers ask for automation.

Amongst these patterns, we identified four major trends based on
their structural similarity (i.e., expression- and statement-level):

(1) transform to Context managers- 1237 instances
(2) convert for loops to domain specific abstraction- 239 instances
(3) update API usage- 166 instances
(4) use advanced language features- 415 instances

Next, we summarize and triangulate results obtained from source
code mining, thematic analysis, and developer surveys.
Note: Weuse real-world code examples to describe frequent change
patterns. The examples use identifiers tf, np, and torch as aliases of
ML libraries TensorFlow, NumPy, and PyTorch. Due to space limita-
tions, we provide few code examples. Our companion website [21]
presents a curated repository of exemplars for each pattern, as well
as all the instances for each pattern.

5.1.3 Trend 1 - Transform to Context managers: A Python
Context manager is an abstraction for controlling the life-cycle for
a code block. It declares the methods __enter__ (initialization),
and __exit__ (finalization) which together define the desired run-
time environment for the execution of a code block. The code block
needs to be surrounded in a with statement [68] that invokes the
Context manager. We observed 1,237 change instances belonging
to eight pattern groups (P1–P8 in Table 1) where developers move
code blocks into with statements and use Context managers.

Listing 4: Commit dfb7520c in Pytorch: Disable gradient

1 -input.grad.data.zero_()
2 +with torch.no_grad():
3 + input.grad.zero_()

Listing 4 is an example of pattern P2 (Disable or enable gradient
calculation). The survey respondent S21 said, “when we do not need

gradient computation in a DL network (using Tensor.backward()),

it is important to disable the gradient calculation globally to reduce

memory consumption and increase speed”. The context manager
torch.no_grad() from PyTorch, creates an execution environment
for the code in line 3 and disables the gradient calculation. Like wise,
the patterns (P2–P8) in Table 1 create new execution environments.

Listing 5: Commit 02ccf29b in tensorflow/datasets: Move

Context managers that used to read data to with statement

1 -file_ = tf.gfile.GFile(label_path)
2 -dataset = csv.DictReader(file_, delimiter="⁀")
3 +with tf.gfile.GFile(label_path) as file_:
4 + dataset = csv.DictReader(file_, delimiter="⁀")

We will now explain the most populous pattern group P1 (Read,
write, traverse data) which moves an already existing Context man-
ager within a with statement (see Listing 5). The survey respondent
S11 said, “When we use Context managers in with statement, the

required resources are allocated and released precisely.” Line 3 in List-
ing 5 uses the Context manager tf.gfile.GFile which handles
I/O operations. The developers do not need to handle I/O opera-
tions such as file open (initialization) and file close (finalization)
when they use the Context manager inside a with statement. How-
ever, if developers use the Context manager as a function call (see
deleted line 1 in Listing 5), they need to handle all the initialization
and finalization logic [1]. Hence, if a Context manager is used as a
function call: (i) API misuses often happen, and allocated resources
might not be managed efficiently [74, 83], (ii) developers need to



Discovering Repetitive Code Changes in Python ML Systems ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Triangulating source codemining results with survey responses: 4major trends, the pattern groups for each trend, and

whether that pattern is specific to ML code (columnML). Column I shows the number of instances for each pattern. Column R

shows number of survey respondents. Next columns indicate their responses to survey Q2 (How often these changes happen

inML code?) and Q3 (How often have youmanually performed this change?), with frequency: Very Often (VO), Often (O), Rare

(R), and Never (N). Q4 (Would you like to have this change automated by a tool?) response: Yes, No, Already Automated (AA).

Static Analysis Survey Responses
𝑄2 𝑄3 𝑄4

Trend P Pattern ML
1

I R VO O R N VO O R N Yes No AA

Move to
with

statement
and use
Context
managers

P1 Read, write, traverse data × 467 6 67% 17% - 17% 83% - 17% - 100% - -
P2 Disable or enable gradient calculation ✓ 92 5 100% - - - 80% - 20% - 100% - -
P3 Swap ML training devices ✓ 21 3 100% - - - 67% 33% - - 67% 33% -
P4 Change name and variable scopes in DL networks ✓ 106 7 57% 43% - - 57% 29% 14% - 57% 43% -
P5 Execute dependencies of a Tensorflow graphs ✓ 57 3 100% - - - 100% - - - 33% 67% -
P6 Temporarily change configurations of libraries × 59 2 - 50% 50% - 100% - - - 50% 50% -
P7 Transform to context managers in pytest × 335 6 33% 50% 17% - 67% 33% - - 67% 33% -
P8 Use context managers to open temporary directories × 100 6 33% 50% - 17% 67% - 33% - 83% 17% -

Dissolve
for loops,
into domain
specific
abstractions

P9 Transform to optimized operations in NumPy ✓ 179 10 100% - - - 90% - 10% - 100% - -
P10 Transform to operations in List or Dictionary × 24 3 67% 33% - - 33% - 67% - 33% 67% -
P11 Transforming to Python built in functions × 15 2 100% - - - - 100% - 100% - -
P12 Transform functions in String × 14 2 - 50% 50% - 100% - - - 100% - -
P13 Transform to set operations × 7 2 100% - - - 50% - 50% - 100% - -

Update
API
usage,
(212)

P14 Migrating to APIs ML libraries ✓ 26 5 100% - - - 100% - - - 100% - -
P15 Transform Matrix ✓ 82 6 83% 17% - - 100% - - - 33% 50% -
P16 Change data visualization ✓ 28 2 50% 50% - - 50% - 50% - 50% 50% -
P17 Composite ML APIs ✓ 22 5 100% - - - 100% - - - 100% - -
P18 Update Container × 115 5 60% - 40% - 60% - 40% - 80% 20% -
P19 Update Type of Matrices ✓ 16 4 100% - - - 50% - 50% - 50% 50% -

Use advanced
Language
Features

P20 Simplify conditional statement × 24 3 33% 67% - 67% - - 33% 33% - 67%
P21 Migrate from Dict, Set, List constructors to literals × 42 4 25% 75% - 25% - - 75% 25% - 75%
P22 Transform to Python List, Dict, or Set Comprehension × 349 6 33% 67% - 33% - - 67% 33% - 67%

1 ML specific Patterns: i.e., patterns related to ML techniques. More than 80% developers confirmed they happen in ML very often or often

update all the initialisation and finalisation code when they update
the library versions (if the APIs have changed). The respondent
S13 said, “I envision IDEs that automate moving Context managers

to with statements.”

Table 1 tabulates the results for each major trend and pattern
group, and shows survey responses for each pattern group. 90% of
the survey respondents who performed Trend-1 changes confirmed
that they move to with statements very often (VO) or often (O). All
respondents perform the code transformation manually, and 74%
of the respondents requested automation in their IDEs.

5.1.4 Trend 2 - Convert for-loops into domain specific ab-

straction: Listing 1 shows one such example where the developer
uses np.sum from NumPy [61] instead of using for loop to com-
pute the sum of elements in a list. Developers often perform this
change to enhance the performance and code readability. Survey
respondent S22 who performed pattern P9 said, “Sometimes, Python

for loop is a real performance killer. I want my IDEs to suggest the

optimized APIs from ML libraries that I can use instead of loops”.
Moreover, as alternatives to for loops, developers use (i) List or
Dictionary operations (P10), (ii) Built in Python functions (P11),
(iii) Python String.join() (P12), and (iv) Set operations union
and intersection (P13). Python is an interpreted language, thus
compiler level optimisations do not happen in Python. The respon-
dent S24 said, “For other programming languages, I might expect the

compiler to optimize this type of loop, so yes, I would be interested in a

suggestion by the IDE.” As shown in Table 1, 95% of the respondents
who performed Trend 2 confirmed they do this very often (VO) or
often (O) in ML code. All the respondents manually perform the
change, and 89% of the respondents requested automation support.

5.1.5 Trend 3 - Update API usage: Listing 6 shows an exam-
ple API migration where the developer uses a readily-available
np.mean instead of computing mean of the list first_occ. Survey
respondent S35 said, “NumPy offers efficient arrays and APIs for com-

putational operations, tools that inspect the code and suggest NumPy

APIs are very much needed.”

Listing 6: Commit 8592777b in inspirehep/magpie: Migrate

API to NumPy

1 -return sum(first_occ) / len(first_occ)
2 +return np.mean(first_occ)

Matrix transformations (P15) such as transpose, broadcast,
squeeze, and unsqueeze are frequent in ML projects. The respon-
dent S31 said, “bugs due to wrong matrix shapes are hard to detect

and prevalent in ML systems. I like to have tools that identify these

bugs and broadcast the matrices to correct shape”. Chen et al. [15]
observed developers change the bit size of matrices to get good
trade-off between training time and accuracy of the predictions.



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig

Congruent to this, we observed developers update the type of ma-
trices, e.g., migrating to an int64 matrix (P19) as shown in Listing 7.

Listing 7: Commit 8f9cabbf in stellargraph/stellargraph: Up-

date matrix type

1 -np.hstack((A.row[:, None], A.col[:, None])
2 +np.hstack((A.row[:, None], A.col[:, None]))

↩→ .astype(np.int64)

Other patterns include changing data visualization with Mat-
plotlib [48](P16), e.g., between drawing all the plots in one figure
vs using an individual figure for each plot. Another pattern is us-
ing composite ML APIs (P17). Developers often traverse datasets
multiple times (which is inefficient). A more efficient solution is to
apply a composite operation. In Listing 8, developers compute dot
product on three matrices instead of applying a np.multi_dot.

Listing 8: Commit 180646fa in scikit-learn: Composite APIs

1 -denominator = np.dot(np.dot(W.T, W), H)
2 +denominator = np.linalg.multi_dot([W.T, W, H])

ML libraries offer several optimized containers (e.g., NumPy ar-
rays, Tensors) for data processing. Updating containers, e.g., from
Python’s List to NumPy.Array, is another frequent change in ML
systems (P18). Ketkar et al. [42] discovered that in Java code, these
type migrations are more common than rename refactorings. More-
over, Table 1 shows that 85% of respondents who performed Trend
3, perform it very often (VO). All the respondents manually perform
these changes, and 70% of respondents sought automation in IDEs.

5.1.6 Trend 4 - Use advanced language features: Python of-
fers powerful features: (i) functions [65] such as bool and isinst-

ance that can be used to simplify a conditional statement (P20),
(ii) literals such as [], {}, () to efficiently create containers instead
of using constructors such as list(), dict(), tuple() (P21) (see
Listing 9). (iii) Python comprehension [66] to make code concise
and inline for loops (P22). Researchers [10, 45] observed ML code
extensively operates on data, which results in expressions that are
longer and more complex than in traditional systems. Good soft-
ware engineering principles [26, 47] require that developers change
the code to make it concise and readable. However, 69% of the sur-
vey respondents who performed Trend 4 changes confirmed they
rarely perform this in their project, and 30% of developers sought
automated help.

Listing 9: Commit 15d7634d in RasaHQ/rasa: Use set literals

instead of set constructor

1 -set(utils.module_path_from_instance(p)
↩→ for p in agent.policy_ensemble.policies)

2 +{utils.module_path_from_instance(p)
↩→ for p in agent.policy_ensemble.policies}

5.2 Improvements caused by Refactoring

Awareness (RQ2)

5.2.1 Impact of refactoring awareness. To answer this question, we
executed the PyCPatMiner and R-CPatMiner on the study corpus
and compared the results. We compared, number of change graphs,
number of patterns, and distribution of code instances per pattern
reported by both tools.

As shown in Table 3, R-CPatMiner processed 16%more changed
methods, 0.1B more AST nodes than PyCPatMiner. PyCPatMiner
builds one change graph for each mapped code block pair (i.e., be-
fore and after the changed method body). Therefore, R-CPatMiner
produces 16% more change graphs, thus confirming the valus of
de-obfuscating change graphs that were previously obfuscated by
refactoring. Then the R-CPatMiner mines all the generated change
graphs and extracts repeated isomorphic sub-graphs as patterns.
CPATMiner uses minimum frequencies of repeated subgraphs 𝜎 to
be three adheres to the Rule of Three [73], a standard recurrence
measure in pattern analysis. Therefore, all the patterns contain at
least three code instances. We compared the number of patterns
generated by the R-CPatMiner and PyCPatMiner and observed
that R-CPatMiner captures 15%more patterns than PyCPatMiner.

We also compared the distributions of the number of code in-
stances per pattern in both PyCPatMiner and R-CPatMiner. To
assess if there is a statistically significant difference in distributions
of the number of code instances per pattern reported by PyCPat-
Miner and R-CPatMiner, we applied the Wilcoxon Signed-Rank

test on the paired samples of number of code instances of each
pattern. The test rejected the null hypothesis that the density of
code instances of the pattern produced by PyCPatMiner is more
than it is in R-CPatMiner at the significance level of 5% (p-value
= 1.12 × 10−10). We used the Hodges-Lehman estimator to quantify
the difference between the two distributions, as it is appropriate to
be used with the Wilcoxon Singed-Rank test. The value turned out
to be 1, which is equal to the estimated median of the difference
between the number of code instances per pattern from PyCPat-
Miner and R-CPatMiner. Therefore, R-CPatMiner extracts more
code change instances per pattern than the PyCPatMiner.

5.2.2 Evaluating the precision of PyRMiner. It is important for
PyRMiner to have a high precision as we use it to first match
the refactored code blocks that we then pass to R-CPatMiner to
build change graphs. We first identified 18 refactoring kinds that
obfuscate fine-grained changes, i.e, the refactorings that change
method signatures or shift the method bodies. First, we executed
the PyRMiner on our study corpus and chose a statistically signifi-
cant random sample of refactoring instances for each refactoring
kind. Hence, using a t-test, we conclude with 95% confidence that
the precision of the refactoring detection is only ± 5% for each
refactoring kind, as shown in Table 2.

Table 2: Precision of PyRMiner per refactoring kind

Refactoring Kind Precision (#TP) Refactoring Kind Precision (#TP)

Rename Method 96.32% (183) Move And Rename class 96.67% (116)
Move Method 96.3% (156) Move class 100% (160)
Pull Up Method 86.46% (83) Extract Class 98.82% (84)
Push Down Method 89.36% (84) Extract Subclass 100% (45)
Extract Superclass 95.24% (40) Parameterize Variable 87.23% (82)
Split Parameter 91.66% (22) Move & RenameMethod 88.08% (133)
Rename Class 99.2% (124) Remove Parameter 97.56% (160)
Reorder Parameter 98.11% (104) Rename Parameter 93.59% (146)
Add Parameter 100% (192) Merge Parameter 91.07% (51)

Two of the authors that have more than three years of software
development experience and extensive expertise in software evo-
lution manually validated the refactorings reported by PyRMiner.



Discovering Repetitive Code Changes in Python ML Systems ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Most cases were straightforward and thus were validated individu-
ally, but both authors inspected some challenging cases to reach an
agreement. In total, we validated 2,062 unique refactoring instances,
out of which 1,965 were true positives and 97 were false positives.
This achieves an average precision of 95%, which is close to the
precision of the original Java-RMiner (99.6%). This also shows
the effectiveness of JavaFyPy to adapt Java AST-analysis tools to
Python. We release all the validated refactoring instances on our
companion website [21]. To the best of our knowledge, this is the
largest to date Python data-set of validated refactoring instances.

Recall indicates the proportion of actual refactorings identified
by PyRMiner. Java researchers use previously formed unbiased ora-
cles to compute recall of tools [42, 85]. To the best of our knowledge,
there is no such unbiased refactoring oracle for Python. Considering
the complexity of building an oracle and our main focus (to retrieve
correct code-block mappings to make PyCPatMiner refactoring-
aware), we leave computing recall as future work. However, we ob-
served R-CPatMiner detects 16% more change-graphs (i.e., mapped
code blocks) and 15% more patterns than the PyCPatMiner, which
strongly indicates that the PyRMiner has a satisfactory recall.

5.3 Runtime performance of R-CPatMiner,

PyCPatMiner, and PyRMiner (RQ3)

A fast execution time persuades the users that the adapted tools
can be run on their systems (even on a consumer laptop) in an
acceptable amount of time. It will enable the creation of bigger
datasets of repetitive code changes to strengthen the validity of
empirical research or train learning-based code recommendation
systems, as well as enable innovative uses of code change pattern
mining at commit time. Therefore, we evaluated the execution times
of the adapted tools and compared them with the Java counterparts.

Table 3: Analysed data set and execution time.

Java
CPATMiner

Py-
CPATMiner

R-CPATMiner

Total changed methods 824K 1M 1.16M
Total AST nodes of changed methods 92M 4.5B 4.6B
Total changed graph nodes 8M 4M 4.7M
Total patterns 17K 24K 28K
Execution time <8hours <12hours <19hours

1 The data of the Java-CPATMiner is obtained from its original paper [58]

To measure the execution time of the tools, we executed the
Python adapted RMiner, CPatMiner, and R-CPatMiner on a large
corpus and compared the execution time with the Java version of
the tools. We executed each tool separately on the same machine
with the following specifications: Intel Core i9 CPU @ 2.90GHz, 32
GB DDR4 memory, 1 TB SSD, macOS 10.14.6, and Java 13.0.1 ×64.

First, we record the running time of the type inference tool, Py-
Type [30] (version 2020.10.08). PyType is decoupled from JavaFyPy.
Therefore, we computed the execution time of PyType separately.
PyType took on mean 360ms and 61ms on median for type infer-
ence of all changed files in a commit. We pushed the inferred type
information of all the changed files in all the studied projects’ com-
mits to a repository [69] in Github. Similar to Typeshed [86], a type
repository of Python library APIs that the library clients use for

type annotations, researchers can fast-track their analysis by simply
reusing this inferred type information .

To record running time of PyRMiner, we followed the steps
used by Tsantalis et al. [85] for computing the running time of
their Java-RMiner. We recorded the time required for parsing the
source code of the commit (and its parent), and the time required
for detect refactorings. Our analysis shows that PyRMiner takes
55ms on median and 296.32ms on mean to process a Python com-
mit. Tsantalis et al. [85] found that the Java version of RMiner
takes 44ms on median and 253ms on mean to process one Java
commit. Therefore, PyRMiner takes reasonable time overhead for
the additional processing (i.e., AST transformation), and will not
impact the primary goal of RMiner, i.e., create larger refactoring
datasets to strengthen the validity of empirical studies or enable
novel applications of refactoring mining [85].

Table 3 shows the size of processed data and the execution time
of the tools, Java-CPatMiner, PyCPatMiner, and R-CPatMiner.
The running time of the PyCPatMiner and R-CPatMiner is less
than 12 hours and 19 hours respectively, whereas Java-CPatMiner
takes less than 8 hours to mine patterns. However, the Java and
Python corpus is diverse (see Table 3). Hence, it is hard to make a
fair comparison. Nguyen et al. [58] state that the primary goal of
the CPatMiner is to mine the corpus weekly to build a database of
patterns. We believe that R-CPatMiner and PyCPatMiner have
reasonable execution times for achieving the same goal.

6 IMPLICATIONS

We present actionable, empirically-justified implications for four
audiences: (i) researchers, (ii) tool builders and IDE designers, (iii)
ML library vendors, and (iv) developers and educators.

6.1 Researchers

R1. Exploit applications of change repetitiveness of Python

ML software (RQ1, RQ3). In the past, researchers exploited the
repetitiveness of changes in Java systems through: code comple-
tion [13, 34, 43, 55, 56], automated program repair [6, 9, 50], API
recommendation [32, 55], type migration [40], library migration [3,
18, 24, 39, 84], and automated refactoring [19, 28]. Using our rich and
diverse dataset of 28K change patterns instances and our JavaFyPy,
researchers can bring the same benefits to Python ML systems.
R2. Foundations to studyPythonMLSoftware Evolution (RQ1,

RQ2, RQ3). Despite the widespread use of Python ML systems, its
evolution and maintenance tasks are the least automated and the
least studied due to the unavailability of tool support to study ML
systems [22]. Previously, researchers have built infrastructure to
studymany aspects of software evolution. For example, RMiner [85]
and RefDiff [77] mine refactorings, TypeFactMiner [42] mines type
changes,MigrationMiner [3] and APIMigrator [25] mine API migra-
tions, CPATMiner [58] and CodingTracker [54] mine fine-grained
repetitive code changes in Java. This rich infrastructure allows
researchers to study Java software systems, and there are hun-
dreds of published papers that are built upon this infrastructure.
Unfortunately, they miss the whole ecosystem of Python ML code-
bases. Researchers can use our data and toolset to study whether
previously-held beliefs from traditional software are still valid for
ML systems or whether we need to design new tools and workflows



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig

(e.g., version-control systems, code smells, technical debt, etc.) that
are specific to ML.
R3. Enhance existing research and tools forML systems (RQ1,

RQ3): Our infrastructure can be used to enhance the existing re-
search on ML systems. For example, Tang et al. [82] introduce
a taxonomy of refactoring kinds performed in Java ML systems,
Humbatova et al. [35], Islam et al. [37, 38] introduce a taxonomy
of bugs in ML systems based on manual analysis of StackOverFlow
posts. These studies perform extensive manual analysis to build
various taxonomies using a smaller dataset of changes. With our
significantly larger dataset (of 28K change patterns), they can sig-
nificantly extend or further validate their taxonomies. Moreover,
researchers showed the potential of leveraging ML techniques for
code completion [16, 32]. However, they train the ML models either
on a noisy or small dataset which could reduce the accuracy of the
recommendations. Researchers can use our tools/dataset to train
their models on a large, curated dataset and improve their accuracy.
R4. Build novel applications for ML developers (RQ1). Re-
searchers can also use our tools/dataset to build novel applications.
Braiek and Khomh [10] observed ML libraries are core components
of ML systems and are frequently evolving, which causes developer
frustration [22, 92]. A tutoring system can suggest to developers
which constructs to use in order to modernize their ML code. For
example, a tutoring system could recommend changing the code to
use ML library APIs instead of for loops, or removing redundant
matrix operations (or other changes from RQ1:Table 1). Moreover,
a tutor system can recommend novice programmers how to use
advanced language features (see Trend 4 in RQ1:Table 1).
R5. Revisit existing studies and tools formaking themrefac-

toring-aware (RQ2). There exist a plethora of research tools for
mining software repositories, and hundreds of researchers used
these tools to conduct empirical studies. Given that refactorings
obfuscate program elements during software evolution, we showed
that making a state of the art tool such as CPatMiner refactoring
aware increases its overall effectiveness by as much as 15%. We call
the research community to adapt similar methods and to revisit pre-
vious results obtained with tools that were not refactoring-aware.

6.2 Tool Builders and IDE Designers

T1. New inspirations for tool development (RQ1). To help
tool builders invest resources where automation is most needed, in
Table 1 we present 22 patterns along with the ML developers re-
quest for automation. Moving to with statements and using Context
managers is the most prevalent change pattern among the analysed
patterns (See RQ1, P1-P8). In the survey, 74% of respondents suggest
tools that inspect deep learning codebases and recommend using
with statements to (i) turn on or off gradient calculations (P2), (ii)
specify hardware type (P3), (iii) change variable scopes (P4), and
(iv) execute dependencies (P5). Respondents further suggested tools
to (i) move Context manager invocations to with statements, and
(ii) detect misuses of Context managers.

6.3 ML Library vendors

L1. Understand ML Library Usage (RQ1). ML library vendors
continuously improve libraries and introduce new ML libraries at
an unprecedented rate [11, 22]. Library developers deprecate APIs,

introduce more efficient alternative APIs (e.g., Table 1 : P18), and
split ML libraries [22]. Our findings, the accompanying dataset [21],
and the tools we developed can help ML library vendors to under-
stand what APIs are most commonly used, misused, and underused,
and how the developers adapt to new APIs. Thus, they can make in-
formed, empirically-justified decisions to improve features [23, 49].

6.4 Software Developers and Educators

S1. Rich educational resource (RQ1) Developers learn and edu-
cators teach new programming constructs through examples. Robil-
lard et al. [71] studied the challenges of learning APIs and concluded
that one of the important factors is the lack of usage examples. Us-
ing our dataset of 28K code change patterns that we mined in our
corpus, developers and educators can learn from real-world code
transformations (e.g., transforming to multi_dot). We provide 22
empirically justified code change patterns that improve ML code
from many aspects, including speed, code quality, and readability.
ML developers can absorb these changes to their code and improve
the code. We released this through an educational resource [21].

7 THREATS TO VALIDITY

Internal Validity: Can we trust the results produced by tools? The
findings of our study depend on the accuracy of our tools to mine
code change patterns in a refactoring aware manner. We rely on
type inference for augmenting the AST with rich type information.
Since Type inference deduces the types of elements by statically
analysing the program, it may not accurately detect them (com-
pared to the run time). This can effect the quality of mappings
reported by R-CPatMiner and the statements matched by RMiner.
To mitigate this threat, we use PyType [30], a mature tool devel-
oped by Google. Thousands of projects at Google and other places
rely upon PyType to keep their codes well-typed [30]. Moreover,
we validate JavaFyPy’s effectiveness at transforming a variety of
syntactic variations upon 12M AST nodes from 14 popular projects.
Our manual validations shows that PyRMiner reports refactorings
with high precision (95%). We also manually validated 2,500 most
popular patterns produced by R-CPatMiner.

To avoid the experimental bias, we followed the best practices [14,
88] for applying thematic analysis by achieving 80% inter coder
agreement when labelling the patterns.
External Validity: Do our results generalize? We studied 1000
projects from a wide range of application domains, making the
study results generalizable to other open-source projects in sim-
ilar domains. However, a study of proprietary code bases might
reveal other trends. Nevertheless, we make our tools available so
that others can use them to mine patterns in proprietary codebases.
Moreover, R-CPatMiner reports numerous patterns, we manually
analyzed a subset of them; a complete investigation is not practi-
cal. To mitigate this, we ranked the code change patterns in five
dimensions and manually validated the top ones.
Verifiability: Can others replicate our results? To ensure replicabil-
ity, we make the tools and the data publicly available [21].

8 RELATEDWORK

8.0.1 Studies on evolution ofML software systems. Researchers
have studied repetitive tasks of ML systems from many aspects.



Discovering Repetitive Code Changes in Python ML Systems ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Humbatova et al. [35] and Islam et al. [37, 38] introduce a taxonomy
of ML-related bugs and bug fix patterns, Shen et al. [76] study bugs
in Deep Learning (DL) compilers, and Yan et al. [90] study numer-
ical bugs in DL systems. Zhang et al. [91] observe DL program
failures at Microsoft and highlight the need for DL-specific tools to
fix DL bugs. Lwakatare et al. [46], Zhang et al. [92] classify common
challenges that ML developers face when maintaining and evolving
ML systems. Wan et al. [87] found anti-patterns and misused APIs
in ML libraries. Nguyen et al. [57] create a database of DL models
extracted from GitHub to utilize as default models and accelerate
AutoML. Amershi et al. [4] perform a field study at Microsoft and
propose best practices to address common challenges that repeats
among ML systems. In contrast, our focus is on understanding fine-
grained repeated code changes that the ML developers perform and
their motivations.

The closest related work is by Tang et al. [82]. The authors study
327 git patches from 26 Java ML systems and present a taxonomy
of refactoring kinds that occurred in ML systems. In contrast, we
quantitatively and qualitatively studied fine-grained code change
patterns in a significantly larger corpus: 1000 Python-based ML
systems comprising 4,166,520 git patches. Our findings include
both refactorings (e.g., P1, P9) and other semantics-modifying code
changes (e.g., P2, P6). Moreover, we cross-validated our findings by
surveying 97 ML developers. We make our tools available to further
enhance the science and tooling for evolving Python ML systems.

8.0.2 Studies on repetitive code changes. Researchers have
conducted many studies on repetitive code changes. Nguyen et al.
[58, 59] use a graph-based algorithm to mine fine-grained code
changes at commit level. They conduct a large-scale study on the
repetitiveness of code changes in Java software evolution and show
that repetitiveness is common in small granularity (number of lines),
and it drops exponentially as the granularity increases. Researchers
have also studied repetitiveness from the vantage point of higher-
level maintenance and evolution tasks, (i) Dig and Johnson [20],
Cossette and Walker [17] study incompatibilities between API ver-
sions, (ii) Teyton et al. [84] mine the library migrations trends and
observe how frequently, when, and why they are performed, and
(iii) Ketkar et al. [40] conduct a large-scale study on type changes in
Java systems and reveal that type changes are more frequent than
renaming All of these studies focus on repetitiveness in traditional
systems and do not reveal the kinds of repetitive changes the devel-
opers perform in ML software. In contrast, we study the practices
of fine-grained code changes in ML systems and found four trends
of fine-grained changes. 71% of the surveyed developers requested
automation support for the identified trends in their IDEs.

Previous researchers looked at Python idioms and how they
were used in Python systems. Alexandru et al. [1] present a non-
exhaustive list of Python idioms gleaned from a developer survey.
Sakulniwat et al. [74] studied the evolution of Python with state-
ment over the time. Phan-udom et al. [63] use developer forums
to build a database of Python idioms and propose Teddy, a system
that recommends idioms to developers. In comparison, we provide
R-CPatMiner, which can mine repetitive code changes in Python
systems in refactoring aware manner. R-CPatMiner can be used
to increase related work’s idiom databases.

Researchers reimplemented certain Java AST mining tools for
Python from scratch. PYREF [5] is a Python reimplement of Java
RMiner [85] that identifies 9 kinds of Python refactoring. In con-
trast, our PyRMiner does not require reimplementing from scratch,
and it finds all legitimate Java refactoring in Python. Moreover, we
manually validated 18 kinds of refactoring, as shown in Table 2.
Golubev et al. [29] developed PythonChangeMiner, a tool that
uses fgPDG [58] to mine Python repetitive code changes involv-
ing function calls. In contrast, we present JavaFyPy, a technique
for adapting Java AST mining tools to Python without having to
rewrite them from the ground up. We adapted CPatMiner [58] and
RMiner [85] to Python using JavaFyPy, and subsequently created
R-CPatMiner, a refactoring-aware code change pattern miner for
Python systems.

Researchers proposed several techniques that infer specific kinds
of code change patterns. For example, Revisar [72], GetAFix [6],
and DeepDelta [50] infer repeated bug fixes and compilation errors
from commit histories. LibSync [60], MEditor [89], and A3 [44]
infer the adaptations required to perform library migration. Ketkar
et al. [41] developed TCInfer a technique to accurately infer rewrite
rules for type changes from a project’s version history. They also
proposed IntelliTC [81], a configurable IDE refactoring plugin
that automates these inferred type changes. In contrast, we discover
previously unknown patterns in ML systems that involve adapting
ML libraries (E.g. P9 - for loop to NumPy).

9 CONCLUSIONS

This paper presents the first and the largest study of fine-grained
code change patterns in Python-based ML software systems. To
provide unique insights, we use complementary empirical methods:
(i) mining 1000 software repositories containing over 58 million
LOC, (ii) using thematic analysis to identify the groups and trends,
and (iii) surveying 97 ML developers. To conduct this study and ad-
vance the science and tooling in Python ML software evolution, we
designed a novel technique, JavaFyPy, to reuse, adapt and improve
upon the Java state-of-the-art AST mining tools. We introduce a
novel tool R-CPatMiner that performs refactoring-aware change
patternmining in the version history of Python projects.We present
22 code change pattern groups in four trends, where 10 of them
are specific to ML. In the developer survey, 71% of the respondents
requested these patterns automated in their IDEs. The results and
the tools presented in this study have actionable implications for
researchers, tool builders, library designers, ML developers, and
educators. We hope that this paper and our readily available dataset
and tools [21] catalyzes the community to advance the science and
tooling for the evolution of Python-based ML systems.

10 ACKNOWLEDGEMENTS

We would like to thank Ellick Chan, Rahul Khanna, Bob Banfield,
Julia Romero, Carla Pomian, Dorin Pomian, students from CSCI
7000-08-Spring 2022 at CU Boulder, CUPLV group at CU Boulder,
and the anonymous reviewers for their insightful and construc-
tive feedback for improving the paper. This research was partially
funded through the NSF grants CCF-1553741, CNS-1941898, and
the Industry-University Cooperative Research Center on Pervasive
Personalized Intelligence.



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig

REFERENCES

[1] Carol V. Alexandru, José J. Merchante, Sebastiano Panichella, Sebastian Proksch,
Harald C. Gall, and Gregorio Robles. 2018. On the Usage of Pythonic Idioms.
In ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and

Reflections on Programming and Software (Boston, MA, USA) (Onward! 2018).
ACM, New York, NY, USA, 1–11. https://doi.org/10.1145/3276954.3276960

[2] Miltiadis Allamanis and Charles Sutton. 2014. Mining Idioms from Source Code.
In FSE 2014 (Hong Kong, China). Association for Computing Machinery, New
York, NY, USA, 472–483. https://doi.org/10.1145/2635868.2635901

[3] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. Migration-
Miner: An Automated Detection Tool of Third-Party Java LibraryMigration at the
Method Level. In ICSME 2019. 414–417. https://doi.org/10.1109/ICSME.2019.00072

[4] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software Engineering for Machine Learning: A Case Study. In ICSE (Montreal,
Quebec, Canada) (ICSE-SEIP ’19). IEEE Press, Piscataway, NJ, USA, 291–300.
https://doi.org/10.1109/ICSE-SEIP.2019.00042

[5] Hassan Atwi, Bin Lin, Nikolaos Tsantalis, Yutaro Kashiwa, Yasutaka Kamei,
Naoyasu Ubayashi, Gabriele Bavota, andMichele Lanza. 2021. PYREF: Refactoring
Detection in Python Projects. In 2021 IEEE 21st International Working Conference

on Source Code Analysis and Manipulation (SCAM). 136–141. https://doi.org/10.
1109/SCAM52516.2021.00025

[6] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to Fix Bugs Automatically. Proc. ACM Program. Lang. 3, OOPSLA, Article
159 (Oct. 2019), 27 pages. https://doi.org/10.1145/3360585

[7] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica
Sarro. 2014. The Plastic Surgery Hypothesis. In FSE 2014 (Hong Kong, China)
(FSE 2014). Association for Computing Machinery, New York, NY, USA, 306–317.
https://doi.org/10.1145/2635868.2635898

[8] Amine Barrak, Ellis E. Eghan, and Bram Adams. 2021. On the Co-evolution of
ML Pipelines and Source Code - Empirical Study of DVC Projects. In SANER 2021.
422–433. https://doi.org/10.1109/SANER50967.2021.00046

[9] Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad. 2019. Phoenix: Automated
Data-Driven Synthesis of Repairs for Static Analysis Violations. In ESEC/FSE

2019 (Tallinn, Estonia) (ESEC/FSE 2019). ACM, New York, NY, USA, 613–624.
https://doi.org/10.1145/3338906.3338952

[10] Houssem Ben Braiek and Foutse Khomh. 2020. On testing machine learning
programs. Journal of Systems and Software 164 (2020), 110542. https://doi.org/
10.1016/j.jss.2020.110542

[11] Houssem Ben Braiek, Foutse Khomh, and Bram Adams. 2018. The Open-Closed
Principle of Modern Machine Learning Frameworks. In MSR ’18 (Gothenburg,
Sweden) (MSR ’18). Association for Computing Machinery, New York, NY, USA,
353–363. https://doi.org/10.1145/3196398.3196445

[12] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology. Qualitative Research in Psychology 3, 2 (2006),
77–101.

[13] Marcel Bruch, Martin Monperrus, and Mira Mezini. 2009. Learning from Exam-
ples to Improve Code Completion Systems. In ESEC/FSE ’09 (Amsterdam, The
Netherlands) (ESEC/FSE ’09). Association for Computing Machinery, New York,
NY, USA, 213–222. https://doi.org/10.1145/1595696.1595728

[14] John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Pedersen. 2013.
Coding in-depth semistructured interviews: Problems of unitization and inter-
coder reliability and agreement. Sociological Methods & Research 42, 3 (2013),
294–320. https://doi.org/10.1177/0049124113500475

[15] Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, HaoyuWang, Tao Xie, and Xuanzhe
Liu. 2020. A Comprehensive Study on Challenges in Deploying Deep Learning
Based Software. In FSE (Virtual Event, USA) (ESEC/FSE 2020). Association for
Computing Machinery, New York, NY, USA, 750–762. https://doi.org/10.1145/
3368089.3409759

[16] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet,
Denys Poshyvanyk, and Martin Monperrus. 2019. SEQUENCER: Sequence-
to-Sequence Learning for End-to-End Program Repair. TSE 2019 (2019), 1–1.
https://doi.org/10.1109/TSE.2019.2940179

[17] Bradley E. Cossette and Robert J. Walker. 2012. Seeking the Ground Truth: A
Retroactive Study on the Evolution and Migration of Software Libraries (FSE ’12).
ACM, New York, NY, USA, Article 55, 11 pages. https://doi.org/10.1145/2393596.
2393661

[18] Barthélémy Dagenais and Martin P. Robillard. 2011. Recommending Adaptive
Changes for Framework Evolution. ACM Trans. Softw. Eng. Methodol. 20, 4, Article
19 (Sept. 2011), 35 pages. https://doi.org/10.1145/2000799.2000805

[19] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. 2006. Au-
tomated Detection of Refactorings in Evolving Components. In ECOOP’06

(Nantes, France) (ECOOP’06). Springer-Verlag, Berlin, Heidelberg, 404–428. https:
//doi.org/10.1007/11785477_24

[20] DannyDig and Ralph Johnson. 2006. HowDoAPIs Evolve? A Story of Refactoring:
Research Articles. J. Softw. Maint. Evol. 18, 2 (March 2006), 83–107.

[21] Malinda Dilhara. 2022. Discovering Repetitive Code Changes in Python-based ML

Systems. https://mlcodepatterns.github.io Accessed: 2022-02-07.
[22] Malinda Dilhara, Ameya Ketkar, and Danny Dig. 2021. Understanding Software-

2.0: A Study of Machine Learning Library Usage and Evolution. ACM Trans.

Softw. Eng. Methodol. 30, 4, Article 55 (July 2021), 42 pages. https://doi.org/10.
1145/3453478

[23] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. 2014. Min-
ing Billions of AST Nodes to Study Actual and Potential Usage of Java Language
Features. In ICSE (Hyderabad, India) (ICSE 2014). Association for Computing Ma-
chinery, New York, NY, USA, 779–790. https://doi.org/10.1145/2568225.2568295

[24] Mattia Fazzini, Qi Xin, and Alessandro Orso. 2019. Automated API-Usage Update
for Android Apps. In ISSTA 2019 (Beijing, China) (ISSTA 2019). Association for
Computing Machinery, New York, NY, USA, 204–215. https://doi.org/10.1145/
3293882.3330571

[25] Mattia Fazzini, Qi Xin, and Alessandro Orso. 2020. APIMigrator: An API-Usage
Migration Tool for Android Apps. In MOBILESoft ’20 (Seoul, Republic of Korea)
(MOBILESoft ’20). Association for Computing Machinery, New York, NY, USA,
77–80. https://doi.org/10.1145/3387905.3388608

[26] Michael Feathers. 2004. Working Effectively with Legacy Code: WORK EFFECT

LEG CODE _p1. Prentice Hall Professional.
[27] Eclipse foundation. 2021. JDT Core Component. Eclipse. https://www.eclipse.

org/jdt/core/#JDT_CORE Accessed: 2021-03-31.
[28] Lyle Franklin, Alex Gyori, Jan Lahoda, and Danny Dig. 2013. LAMBDAFICATOR:

From Imperative to Functional Programming through Automated Refactoring.
In ICSE (San Francisco, CA, USA) (ICSE ’13). IEEE Press, 1287–1290. https:
//doi.org/10.1109/ICSE.2013.6606699

[29] Yaroslav Golubev, Jiawei Li, Viacheslav Bushev, Timofey Bryksin, and Iftekhar
Ahmed. 2021. Changes from the trenches: Should we automate them? arXiv

preprint arXiv:2105.10157 (2021).
[30] Google. 2021. PyType. https://github.com/google/pytype Accessed: 2021-03-31.
[31] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu,

and Miryung Kim. 2020. Is Neuron Coverage a Meaningful Measure for Testing
Deep Neural Networks?. In FSE (Virtual Event, USA) (ESEC/FSE 2020). ACM, New
York, NY, USA, 851–862. https://doi.org/10.1145/3368089.3409754

[32] Xincheng He, Lei Xu, Xiangyu Zhang, Rui Hao, Yang Feng, and Baowen Xu. 2021.
PyART: Python API Recommendation in Real-Time. In ICSE 2021. 1634–1645.
https://doi.org/10.1109/ICSE43902.2021.00145

[33] Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu.
2016. On the Naturalness of Software. Commun. ACM 59, 5 (April 2016), 122–131.
https://doi.org/10.1145/2902362

[34] Reid Holmes, Robert J. Walker, and Gail C. Murphy. 2006. Approximate Structural
Context Matching: An Approach to Recommend Relevant Examples. IEEE Trans.

Softw. Eng. 32, 12 (Dec. 2006), 952–970. https://doi.org/10.1109/TSE.2006.117
[35] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea

Stocco, and Paolo Tonella. 2020. Taxonomy of Real Faults in Deep Learning
Systems. In ICSE ’20 (Seoul, South Korea) (ICSE ’20). ACM, New York, NY, USA,
1110–1121. https://doi.org/10.1145/3377811.3380395

[36] Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepCrime:
Mutation Testing of Deep Learning Systems Based on Real Faults. In ISSTA-

2021 (Virtual, Denmark) (ISSTA 2021). ACM, New York, NY, USA, 67–78. https:
//doi.org/10.1145/3460319.3464825

[37] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
Comprehensive Study on Deep Learning Bug Characteristics. In ESEC/FSE 2019

(Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery, New
York, NY, USA, 510–520. https://doi.org/10.1145/3338906.3338955

[38] Md Johirul Islam, Rangeet Pan, Giang Nguyen, andHridesh Rajan. 2020. Repairing
Deep Neural Networks: Fix Patterns and Challenges. In ICSE ’20 (Seoul, Republic
of Korea) (ICSE ’20). ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/1122445.1122456

[39] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E. Hassan. 2016.
Logging Library Migrations: A Case Study for the Apache Software Foundation
Projects. InMSR ’16 (Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 154–164.
https://doi.org/10.1145/2901739.2901769

[40] Ameya Ketkar, Ali Mesbah, Davood Mazinanian, Danny Dig, and Edward Af-
tandilian. 2019. Type Migration in Ultra-Large-Scale Codebases. In ICSE ’19

(Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, 1142–1153. https://doi.org/
10.1109/ICSE.2019.00117

[41] Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Timofey
Bryksin. 2022. Inferring and Applying Type Changes. In 44th International

Conference on Software Engineering (ICSE ’22) (Pittsburgh, United States) (ICSE
’22). ACM. https://doi.org/10.1145/3510003.3510115

[42] Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2020. Understanding Type
Changes in Java. In FSE (Virtual Event, USA) (ESEC/FSE 2020). Association for
Computing Machinery, New York, NY, USA, 629–641. https://doi.org/10.1145/
3368089.3409725

[43] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-Written Patches. In ICSE (San Francisco,
CA, USA) (ICSE ’13). IEEE Press, 802–811.

https://doi.org/10.1145/3276954.3276960
https://doi.org/10.1145/2635868.2635901
https://doi.org/10.1109/ICSME.2019.00072
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/SCAM52516.2021.00025
https://doi.org/10.1109/SCAM52516.2021.00025
https://doi.org/10.1145/3360585
https://doi.org/10.1145/2635868.2635898
https://doi.org/10.1109/SANER50967.2021.00046
https://doi.org/10.1145/3338906.3338952
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1145/3196398.3196445
https://doi.org/10.1145/1595696.1595728
https://doi.org/10.1177/0049124113500475
https://doi.org/10.1145/3368089.3409759
https://doi.org/10.1145/3368089.3409759
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1145/2000799.2000805
https://doi.org/10.1007/11785477_24
https://doi.org/10.1007/11785477_24
https://mlcodepatterns.github.io
https://doi.org/10.1145/3453478
https://doi.org/10.1145/3453478
https://doi.org/10.1145/2568225.2568295
https://doi.org/10.1145/3293882.3330571
https://doi.org/10.1145/3293882.3330571
https://doi.org/10.1145/3387905.3388608
https://www.eclipse.org/jdt/core/#JDT_CORE
https://www.eclipse.org/jdt/core/#JDT_CORE
https://doi.org/10.1109/ICSE.2013.6606699
https://doi.org/10.1109/ICSE.2013.6606699
https://github.com/google/pytype
https://doi.org/10.1145/3368089.3409754
https://doi.org/10.1109/ICSE43902.2021.00145
https://doi.org/10.1145/2902362
https://doi.org/10.1109/TSE.2006.117
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1145/3460319.3464825
https://doi.org/10.1145/3460319.3464825
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/2901739.2901769
https://doi.org/10.1109/ICSE.2019.00117
https://doi.org/10.1109/ICSE.2019.00117
https://doi.org/10.1145/3510003.3510115
https://doi.org/10.1145/3368089.3409725
https://doi.org/10.1145/3368089.3409725


Discovering Repetitive Code Changes in Python ML Systems ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

[44] M. Lamothe, W. Shang, and T. Chen. 2020. A3: Assisting Android API Migrations
Using Code Examples. TSE 2020 01 (apr 2020), 1–1. https://doi.org/10.1109/TSE.
2020.2988396

[45] Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li. 2020.
Is Using Deep Learning Frameworks Free? Characterizing Technical Debt in
Deep Learning Frameworks. In ICSE (Seoul, South Korea) (ICSE-SEIS ’20). ACM,
New York, NY, USA, 1–10. https://doi.org/10.1145/3377815.3381377

[46] Lucy Ellen Lwakatare, Aiswarya Raj, Jan Bosch, Helena Holmström Olsson,
and Ivica Crnkovic. 2019. A Taxonomy of Software Engineering Challenges
for Machine Learning Systems: An Empirical Investigation. In Agile Processes

in Software Engineering and Extreme Programming, Philippe Kruchten, Steven
Fraser, and François Coallier (Eds.). Springer International Publishing, Cham,
227–243.

[47] Robert C Martin. 2009. Clean code: a handbook of agile software craftsmanship.
Pearson Education.

[48] Matplotlib. 2021. Matplotlib. https://matplotlib.org Accessed: 2021-05-05.
[49] Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2017.

Understanding the Use of Lambda Expressions in Java. Proc. ACM Program. Lang.

1, OOPSLA, Article 85 (Oct. 2017), 31 pages. https://doi.org/10.1145/3133909
[50] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.

2019. DeepDelta: Learning to Repair Compilation Errors. In ESEC/FSE. 925–936.
https://doi.org/10.1145/3338906.3340455

[51] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2009. How We
Refactor, and HowWe Know It. In ICSE ’09 (ICSE ’09). Association for Computing
Machinery, New York, NY, USA, 287–297. https://doi.org/10.1109/ICSE.2009.
5070529

[52] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny Dig.
2013. A Comparative Study of Manual and Automated Refactorings. In ECOOP’13

(Montpellier, France) (ECOOP’13). Springer-Verlag, Berlin, Heidelberg, 552–576.
https://doi.org/10.1007/978-3-642-39038-8_23

[53] Stas Negara, Mihai Codoban, DannyDig, and Ralph E. Johnson. 2014. Mining Fine-
Grained Code Changes to Detect Unknown Change Patterns. In ICSE (Hyderabad,
India) (ICSE 2014). Association for Computing Machinery, New York, NY, USA,
803–813. https://doi.org/10.1145/2568225.2568317

[54] Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E. Johnson, and Danny Dig.
2012. Is It Dangerous to Use Version Control Histories to Study Source Code
Evolution?. In ECOOP’12 (Beijing, China) (ECOOP’12). Springer-Verlag, Berlin,
Heidelberg, 79–103. https://doi.org/10.1007/978-3-642-31057-7_5

[55] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast,
Eli Rademacher, Tien N. Nguyen, and Danny Dig. 2016. API Code Recommendation

Using Statistical Learning from Fine-Grained Changes. ACM, New York, NY, USA,
511–522. https://doi.org/10.1145/2950290.2950333

[56] Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi,
Hung Viet Nguyen, Jafar Al-Kofahi, and Tien N. Nguyen. 2012. Graph-Based
Pattern-Oriented, Context-Sensitive Source Code Completion. In ICSE (Zurich,
Switzerland) (ICSE ’12). IEEE Press, 69–79.

[57] Giang Nguyen, Johir Islam, Rangeet Pan, and Hridesh Rajan. 2022. Manas:
Mining Software Repositories to Assist AutoML. In ICSE’22: The 44th International
Conference on Software Engineering (Pittsburgh, PA, USA). https://doi.org/10.
1145/3510003.3510052 To appear.

[58] H. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran, and M. Hilton. 2019. Graph-
Based Mining of In-the-Wild, Fine-Grained, Semantic Code Change Patterns.
In ICSE 2019. IEEE Computer Society, Los Alamitos, CA, USA, 819–830. https:
//doi.org/10.1109/ICSE.2019.00089

[59] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen,
and Hridesh Rajan. 2013. A Study of Repetitiveness of Code Changes in Software
Evolution. In ASE ’13 (Silicon Valley, CA, USA) (ASE’13). IEEE Press, 180–190.
https://doi.org/10.1109/ASE.2013.6693078

[60] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Anh Tuan Nguyen,
Miryung Kim, and Tien N. Nguyen. 2010. A Graph-Based Approach to API Usage
Adaptation. SIGPLAN Not. 45, 10 (Oct. 2010), 302–321. https://doi.org/10.1145/
1932682.1869486

[61] Numpy. 2021. NumPy. https://numpy.org Accessed: 2021-05-05.
[62] Oracle. 2021. Java SE specification. Oracle. https://docs.oracle.com/javase/specs/

Accessed: 2021-03-31.
[63] Purit Phan-udom, Naruedon Wattanakul, Tattiya Sakulniwat, Chaiyong

Ragkhitwetsagul, Thanwadee Sunetnanta, Morakot Choetkiertikul, and
Raula Gaikovina Kula. 2020. Teddy: Automatic Recommendation of Pythonic
Idiom Usage For Pull-Based Software Projects. In ICSME-2020. 806–809. https:
//doi.org/10.1109/ICSME46990.2020.00098

[64] Python. 2021. Context Manager. https://docs.python.org/3/reference/datamodel.
html#context-managers Accessed: 2021-03-31.

[65] Python. 2021. Functions. Python. https://docs.python.org/3/library/functions.
html Accessed: 2021-03-31.

[66] Python. 2021. list-comprehensions. https://docs.python.org/3/tutorial/
datastructures.html#list-comprehensions Accessed: 2021-05-05.

[67] Python. 2021. Python AST. Python. https://docs.python.org/3/library/ast.html
Accessed: 2021-03-31.

[68] Python. 2021. With Statement. Python. https://docs.python.org/3/reference/
compound_stmts.html#the-with-statement Accessed: 2021-03-31.

[69] PythonTypeInformation. 2021. PythonTypeInformation. GitHub. https://github.
com/mlcodepatterns/PythonTypeInformation Accessed: 2021-05-05.

[70] Sebastian Raschka and Vahid Mirjalili. 2017. Python Machine Learning: Machine
Learning and Deep Learning with Python, scikit-learn, and TensorFlow.

[71] Martin P. Robillard and Robert Deline. 2011. A Field Study of API Learning
Obstacles. Empirical Softw. Engg. 16, 6 (Dec. 2011), 703–732. https://doi.org/10.
1007/s10664-010-9150-8

[72] Reudismam Rolim, Gustavo Soares, Rohit Gheyi, and Loris D’Antoni. 2018. Learn-
ing Quick Fixes from Code Repositories. (2018). http://arxiv.org/abs/1803.03806

[73] RuleOfThree. 2021. RuleOfThree. wikic2. http://wiki.c2.com/?RuleOfThree
Accessed: 2021-05-05.

[74] Tattiya Sakulniwat, Raula Gaikovina Kula, Chaiyong Ragkhitwetsagul, Morakot
Choetkiertikul, Thanwadee Sunetnanta, Dong Wang, Takashi Ishio, and Kenichi
Matsumoto. 2019. Visualizing the Usage of Pythonic Idioms over Time: A Case
Study of the with open Idiom. In IWESEP-2019. IEEE, 43–435.

[75] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Denni-
son. 2015. Hidden Technical Debt in Machine Learning Systems (NIPS’15). MIT
Press, Cambridge, MA, USA, 2503–2511.

[76] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A Comprehensive Study of Deep Learning Compiler Bugs.
In FSE (Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery,
New York, NY, USA, 968–980. https://doi.org/10.1145/3468264.3468591

[77] D. Silva, J. Silva, G. De Souza Santos, R. Terra, and M. O. Valente. 5555. RefDiff
2.0: A Multi-language Refactoring Detection Tool. TSE 2020 01 (jan 5555), 1–1.
https://doi.org/10.1109/TSE.2020.2968072

[78] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We
Refactor? Confessions of GitHub Contributors. In FSE (Seattle, WA, USA) (FSE
2016). Association for Computing Machinery, New York, NY, USA, 858–870.
https://doi.org/10.1145/2950290.2950305

[79] Janice Singer, Susan E Sim, and Timothy C Lethbridge. 2008. Software engineer-
ing data collection for field studies. In Guide to Advanced Empirical Software

Engineering. Springer, 9–34.
[80] Brett Slatkin. 2019. Effective python: 90 specific ways to write better python.

Addison-Wesley Professional.
[81] Oleg Smirnov, Ameya Ketkar, Timofey Bryksin, Nikolaos Tsantalis, and Danny

Dig. 2022. IntelliTC: Automating Type Changes in IntelliJ IDEA. In 44th In-

ternational Conference on Software Engineering Companion (ICSE ’22 Compan-

ion) (Pittsburgh, United States) (ICSE ’22 Companion). ACM/IEEE. https:
//doi.org/10.1145/3510454.3516851

[82] Y. Tang, R. Khatchadourian, M. Bagherzadeh, R. Singh, A. Stewart, and A. Raja.
2021. An Empirical Study of Refactorings and Technical Debt inMachine Learning
Systems. In ICSE 2021. IEEE Computer Society, Los Alamitos, CA, USA, 238–250.
https://doi.org/10.1109/ICSE43902.2021.00033

[83] Tensorflow. 2022. TensorFlow Core v2.7.0. https://www.tensorflow.org/api_docs/
python/tf/io/gfile/GFile Accessed: 2022-01-05.

[84] Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc. 2014. A Study
of Library Migrations in Java. J. Softw. Evol. Process 26, 11 (Nov. 2014), 1030–1052.
https://doi.org/10.1002/smr.1660

[85] N. Tsantalis, A. Ketkar, and D. Dig. 5555. RefactoringMiner 2.0. TSE 2020 01 (jul
5555), 1–1. https://doi.org/10.1109/TSE.2020.3007722

[86] TypeShed. 2021. TypeShed. https://github.com/python/typeshed Accessed:
2021-09-03.

[87] C. Wan, S. Liu, H. Hoffmann, M. Maire, and S. Lu. 2021. Are Machine Learning
Cloud APIs Used Correctly?. In ICSE 2021. IEEE Computer Society, Los Alamitos,
CA, USA, 125–137. https://doi.org/10.1109/ICSE43902.2021.00024

[88] David Wicks. 2017. The coding manual for qualitative researchers. Qualitative
research in organizations and management: an international journal (2017). https:
//doi.org/10.1108/QROM-08-2016-1408

[89] Shengzhe Xu, Ziqi Dong, and Na Meng. 2019. Meditor: Inference and Applica-
tion of API Migration Edits. In Proceedings of the 27th International Conference

on Program Comprehension (Montreal, Quebec, Canada) (ICPC ’19). IEEE Press,
Piscataway, NJ, USA, 335–346. https://doi.org/10.1109/ICPC.2019.00052

[90] Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, GanWang, and ZanWang. 2021.
Exposing Numerical Bugs in Deep Learning via Gradient Back-Propagation. In
FSE (Athens, Greece) (ESEC/FSE 2021). ACM, New York, NY, USA, 627–638.

[91] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.
2020. An Empirical Study on Program Failures of Deep Learning Jobs. In ICSE

(Seoul, South Korea) (ICSE ’20). ACM, New York, NY, USA, 1159–1170. https:
//doi.org/10.1145/3377811.3380362

[92] T. Zhang, C. Gao, L. Ma, M. Lyu, and M. Kim. 2019. An Empirical Study of
Common Challenges in Developing Deep Learning Applications. In ISSRE. IEEE
Computer Society, Los Alamitos, CA, USA, 104–115. https://doi.org/10.1109/
ISSRE.2019.00020

https://doi.org/10.1109/TSE.2020.2988396
https://doi.org/10.1109/TSE.2020.2988396
https://doi.org/10.1145/3377815.3381377
https://matplotlib.org
https://doi.org/10.1145/3133909
https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1109/ICSE.2009.5070529
https://doi.org/10.1109/ICSE.2009.5070529
https://doi.org/10.1007/978-3-642-39038-8_23
https://doi.org/10.1145/2568225.2568317
https://doi.org/10.1007/978-3-642-31057-7_5
https://doi.org/10.1145/2950290.2950333
https://doi.org/10.1145/3510003.3510052
https://doi.org/10.1145/3510003.3510052
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1109/ASE.2013.6693078
https://doi.org/10.1145/1932682.1869486
https://doi.org/10.1145/1932682.1869486
https://numpy.org
https://docs.oracle.com/javase/specs/
https://doi.org/10.1109/ICSME46990.2020.00098
https://doi.org/10.1109/ICSME46990.2020.00098
https://docs.python.org/3/reference/datamodel.html#context-managers
https://docs.python.org/3/reference/datamodel.html#context-managers
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/reference/compound_stmts.html#the-with-statement
https://docs.python.org/3/reference/compound_stmts.html#the-with-statement
https://github.com/mlcodepatterns/PythonTypeInformation
https://github.com/mlcodepatterns/PythonTypeInformation
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/s10664-010-9150-8
http://arxiv.org/abs/1803.03806
http://wiki.c2.com/?RuleOfThree
https://doi.org/10.1145/3468264.3468591
https://doi.org/10.1109/TSE.2020.2968072
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1145/3510454.3516851
https://doi.org/10.1145/3510454.3516851
https://doi.org/10.1109/ICSE43902.2021.00033
https://www.tensorflow.org/api_docs/python/tf/io/gfile/GFile
https://www.tensorflow.org/api_docs/python/tf/io/gfile/GFile
https://doi.org/10.1002/smr.1660
https://doi.org/10.1109/TSE.2020.3007722
https://github.com/python/typeshed
https://doi.org/10.1109/ICSE43902.2021.00024
https://doi.org/10.1108/QROM-08-2016-1408
https://doi.org/10.1108/QROM-08-2016-1408
https://doi.org/10.1109/ICPC.2019.00052
https://doi.org/10.1145/3377811.3380362
https://doi.org/10.1145/3377811.3380362
https://doi.org/10.1109/ISSRE.2019.00020
https://doi.org/10.1109/ISSRE.2019.00020

	Abstract
	1 Introduction
	2 MOTIVATING EXAMPLE
	3 technique
	3.1 Python code transformation
	3.2 Refactoring Aware Change Pattern Mining

	4 Research methodology
	4.1 Subject systems
	4.2 Static Analysis of Source Code History
	4.3 Qualitative Study

	5 results
	5.1 Repetitive changes in ML systems (RQ1)
	5.2 Improvements caused by Refactoring Awareness (RQ2)
	5.3 Runtime performance of R-CPatMiner, PyCPatMiner, and PyRMiner (RQ3)

	6 Implications
	6.1 Researchers
	6.2 Tool Builders and IDE Designers
	6.3 ML Library vendors
	6.4 Software Developers and Educators

	7 THREATS TO VALIDITY
	8 RELATED WORK
	9 conclusions
	10 Acknowledgements
	References

