
From Commit Message Generation to
History-Aware Commit Message Completion

Aleksandra Eliseeva
JetBrains Research
Republic of Serbia

alexandra.eliseeva@jetbrains.com

Yaroslav Sokolov
JetBrains
Germany

yaroslav.sokolov@jetbrains.com

Egor Bogomolov
JetBrains Research

Republic of Cyprus
egor.bogomolov@jetbrains.com

Yaroslav Golubev
JetBrains Research

Republic of Serbia
yaroslav.golubev@jetbrains.com

Danny Dig
JetBrains Research

University of Colorado Boulder
United States

danny.dig@jetbrains.com

Timofey Bryksin
JetBrains Research

Republic of Cyprus
timofey.bryksin@jetbrains.com

Abstract—Commit messages are crucial to software develop-
ment, allowing developers to track changes and collaborate effec-
tively. Despite their utility, most commit messages lack important
information since writing high-quality commit messages is tedious
and time-consuming. The active research on commit message
generation (CMG) has not yet led to wide adoption in practice.
We argue that if we could shift the focus from commit message
generation to commit message completion and use previous commit
history as additional context, we could significantly improve the
quality and the personal nature of the resulting commit messages.

In this paper, we propose and evaluate both of these novel
ideas. Since the existing datasets lack historical data, we collect
and share a novel dataset called CommitChronicle, containing
10.7M commits across 20 programming languages. We use this
dataset to evaluate the completion setting and the usefulness of
the historical context for state-of-the-art CMG models and GPT-
3.5-turbo. Our results show that in some contexts, commit mes-
sage completion shows better results than generation, and that
while in general GPT-3.5-turbo performs worse, it shows potential
for long and detailed messages. As for the history, the results
show that historical information improves the performance of
CMG models in the generation task, and the performance of
GPT-3.5-turbo in both generation and completion.

I. INTRODUCTION

Whenever a developer commits their work to a version
control system, they can write a short comment in a natural
language, called a commit message. High-quality commit mes-
sages can greatly aid software maintenance, as they provide
a human-readable overview of what was changed or why
and may ease code review or other activities that require
the comprehension of changes [1]. In contrast, poor commit
messages can negatively affect software defect proneness [2].

Writing a good commit message is tedious and requires
extra time and effort from developers. Research shows that
a significant amount of commit messages from open source
projects lack important information [3] or are even empty [4].

To assist developers, the research community has been
working actively on commit message generation (CMG) [5]–
[19], which is defined as: given the changes made in a commit,
generate an appropriate message. Despite numerous technical

Diff

diff --git a/treeheatmap.rst b/treeheatmap.rst
@@ - , + , @@ TreeHeatmapExample17 7 17 7
- d3.json(, function (error, data) {'/_static/heatmap.json'
+ d3.json(, function (error, data) {'_static/heatmap.json'

Ground truth fix(docs): Fix TreeHeatmap data link.

CMG Remove / in treeheatmap.rst

CMC fix(docs): fix broken link to heatmap.json

CMG + History fix(docs): Remove / in treeheatmap.rst.

Fig. 1. Motivating example for our two ideas for personalizing commit
message generation. CMG = standard commit message generation; CMC =
commit message completion; CMG + history = commit message generation
with commit message history as additional context.

advances in the field, we still do not have wide adoption
of CMG in practice, as several practical aspects are not yet
solved. Researchers [8], [14], [20] found out that over 50%
of messages from existing CMG approaches were inadequate,
i.e., semantically irrelevant to the reference messages.

In this paper, we propose two novel approaches to improve
the quality of generated commit messages from the standpoint
of their personalization: commit message completion instead of
generation, and taking the user’s previous commit messages
into account. To the best of our knowledge, neither of these
approaches has been tested in this context before.

First, we rephrase the problem of commit message genera-
tion into commit message completion. This way, the already-
typed prefix of the commit message helps the model suggest
the following relevant tokens. Completion systems for both
natural languages [21] and programming languages [22] are
now widespread and overall well accepted by end users.
In addition, practitioners explicitly name completion as a
way they might prefer to use CMG approaches [23]. We
hypothesize that a prefix might guide the existing approaches
towards more applicable predictions and improved adherence
to project conventions, as illustrated in Figure 1.

Second, to aid personalization, we take into account syn-
tactic and stylistic conventions of a particular project or user
by considering the history of their commits as a part of the

model’s input. Figure 1 also illustrates this. Such an approach
requires two things: (a) we must have this history saved in
the training dataset, and (b) such a dataset must be not only
large but also diverse for the models to learn various possible
conventions and realistic commit messages.

We start our work by studying existing CMG datasets.
Unfortunately, all of them have the same crucial shortcomings:
no saved history and restrictive data filtering. To mitigate
this issue, we build a large-scale multilingual dataset that
incorporates the best practices from previous works while
avoiding the use of filters restricting the representativeness of
the data. The dataset is called CommitChronicle and contains
∼10.7M commits in 20 programming languages from ∼12K
repositories with permissive licenses. To the best of our
knowledge, our dataset is the only one that both provides
author metadata and keeps commit history close to the origins.

Since we suggest two separate ideas—reformulating commit
message generation to completion and using commit message
history—we experiment with all four possible configurations,
as shown in Figure 2.

To evaluate the completion setting, we study how different
models perform in it. From CMG models, we experiment
with CodeT5 [24], RACE [19], and CodeReviewer [25]. Our
research demonstrates that metrics scores generally increase
when the bigger part of the original message is passed to the
context. This finding suggests that completion could be an ef-
fective way to apply existing approaches. We also experiment
with a large language model GPT-3.5-turbo (also known as
ChatGPT) with a simple and straightforward prompt, which
demonstrates generally worse results than dedicated CMG
models, however, shows potential for longer and more detailed
messages. Our findings suggest that the completion setting is
significantly easier in practice: for the best model, the average
B-Norm value grows from 16.9 in the generation setting to
27.2 when the user already typed half of the message.

We evaluate our second idea of considering the commit
history and show that the history improves the performance
of CMG models for generation (B-Norm improves from 15.3
to 16.9), however, the results are conflicting for completion. As
for GPT-3.5-turbo, the results improve in both settings. Finally,
we study the impact of restrictive data filters by comparing the
models on commits that pass all the restrictions and those that
do not. Our comparison shows that the results are much better
for commits passing all the restrictions than for the commits
that pass neither of the filters (B-Norm five times higher),
indicating that the existing datasets might inflate the results
and fail to account for a lot of in-the-wild commits.

Overall, our results show that both ideas—commit message
completion and taking into account the history of commits—
show potential in specific scenarios and require further re-
search. This paper makes the following contributions:

• A novel reframing of commit message generation into
completion, its formulation, and an evaluation setup.

• An approach of appending the history of commit mes-
sages into the model’s input for the tasks of commit
message generation and completion.

• A comprehensive analysis of existing CMG datasets from
the standpoint of them keeping commit message history
and the restrictiveness of filters, which shows that they
have shortcomings from both points of view.

• A diverse dataset called CommitChronicle with ∼10.7
million commits in 20 programming languages, which
preserves information necessary for utilizing commit his-
tory. We make the dataset publicly available [26].

• A comparison of three state-of-the-art CMG models
(CodeT5, RACE, and CodeReviewer) and GPT-3.5-turbo
from multiple points of view, including generation against
completion and history against no history. Our main
results indicate that in some cases, completion is simpler
than generation, and using history improves the per-
formance of models. All the code for our models and
experiments is available online [27].

II. BACKGROUND

In this section, we give a gentle introduction to the main
relevant concepts: commit message generation, completion as
used in various domains, and the current uses of large language
models (LLMs) in software engineering.

Commit message generation. Modern CMG approaches
can be broadly categorized into three groups: language
modeling-based, retrieval-based, and hybrid.

CMG may be considered as a task of sequence-to-sequence
language modeling, analogous to neural machine transla-
tion [8] or summarization [9]. In this setting, both input and
output are represented as sequences of tokens. During the
training phase, given a source sequence x = (x1, . . . , xn)
and a target sequence y = (y1, . . . , ym), the language model
learns a probability distribution p(y1, . . . , ym|x1, . . . , xn) by
optimizing the loss function.

Most language modeling-based CMG approaches follow
the encoder-decoder structure [8]–[11], [13], [16]. The en-
coder receives a source sequence x and produces a vector
representation h ∈ Rd, where d is a hyperparameter. The
decoder receives h and produces an output sequence y in an
autoregressive manner, i.e., utilizing only previous tokens for
each position. Specific neural network architectures considered
in prior works include Recurrent Neural Network (RNN) and
its modifications [8]–[12], Transformer [13], [16], [19], and
Graph Neural Network (GNN) [18].

Unlike language modelling, retrieval-based approaches find
a commit with the most similar diff in the training set and
return a corresponding message. The first such approach is
NNGen [20]: it uses bag-of-words to represent diffs, retrieves
k most similar commits based on cosine similarity, and returns
the commit message based on the BLEU score [28] between
diffs. Further enhancements to the framework include limiting
retrieval to commits from the same repository [29], replacing
the metric [15], and considering more complex approaches for
representing diffs [30], [31]. Retrieval approaches rely on the
presence of similar messages in the training set and may fail
due to the unique code identifiers in commit messages.

Without history With history

Commit

message

generation

Commit

message

completion

PrefixDiff
Commit
message
history

Commit
message

continuation
+ +PrefixDiff

Commit
message

continuation
+

Diff
Commit
message

Diff
Commit
message
history

+ Commit
message

Fig. 2. Overview of the four configurations considered in our study and their contents.

Finally, hybrid approaches aim to combine the advantages of
both language modeling and retrieval. One option is to choose
between retrieved and generated messages [32] and the other
is to employ the retrieved commits inside the language model
to improve the generation quality [19], [23]. At the moment
of writing, the recently proposed hybrid approach RACE [19]
is state of the art in CMG.

Despite all these different approaches, the question of their
practical usefulness remains open. In several studies, over 50%
of generated messages were rated as low-quality by human
experts [8], [14], [20].

Completion. The completion task might be viewed as a
simpler version of generation. Rather than generating the
full message, completion systems aim to assist a user by
suggesting relevant continuation when they start typing. This
framework is widely used in practice for diverse domains:
writing emails [21] or code completion in IDEs [22], [33].
Popular approaches employ language modelling [21], [22],
[34] or ranking, however, the latter is suitable for domains
where a limited amount of candidates can be obtained, e.g.,
code completion [35].

LLMs in software engineering. LLMs are language mod-
els scaled up to billions of parameters and billions of tokens
in a training set. The majority of recent LLMs are based
on the Transformer decoder [36] architecture. A particularly
interesting property of LLMs is the in-context learning, i.e., the
ability to solve downstream tasks in a few-shot setting (with
just several examples passed as the context) or even zero-shot
setting (without any examples, only an instruction passed as
the context), without actually updating model weights [37].

As for the capabilities of LLMs in the software engineering
domain, a notable example is the code-specific model Codex
from OpenAI [38]. It was shown to achieve good performance
on a variety of software engineering tasks, including both code
generation [38]–[41] and natural language generation [42]–
[44]. Recently, two general-purpose LLMs were introduced
by OpenAI — GPT-3.5-turbo (ChatGPT) and GPT-4. An
overview of their capabilities can be found in the GPT-4
technical report [45] or in the survey from Liu et al. [46].

III. COMMIT MESSAGE COMPLETION

Our first approach for improving the practical usefulness of
existing solutions is moving from commit message generation

to commit message completion. In this section, we formally
define the task and describe the specifics of how it works with
different model architectures.

Task definition. Commit message completion can be for-
mulated as follows: given the prefix of a commit message and
the commit context, generate a suitable continuation for the
commit message. In practice, the length of this continuation
may vary based on the quality and performance of the under-
lying approach and other factors. We follow the existing CMG
works [8], [11], [15], [20] and use diff (i.e., changes made in
the commit) as the main commit context. Figure 2 presents
the high-level overview for the commit message completion
task with commit contexts that we consider. We focus on
the language modeling approach to completion because it is
widely adopted for natural language sequences [21], [34].

Input representation. In this study, we do not seek to
utilize code structure and leave this to future research. We
have two key observations to motivate our decision. Firstly,
developers use version control systems not only for source
code files but also for various related files (e.g., configurations
and READMEs), which do not necessarily follow a formal
structure. Secondly, most of the existing approaches that utilize
code structure only support Java [12], [18], [32], and it
would require substantial effort to support more languages.
To maintain the diversity necessary for the purposes of our
study, we consider it essential to employ a dataset covering
multiple programming languages and therefore use a plain
textual representation of changes made in each commit —
an output of the git diff command.

Encoder-decoder approach. Language modeling-based
CMG approaches can be directly applied to the completion
task. During training, we use the commit diff as the source
sequence x, and the ground truth commit message as the target
sequence y. During inference, the model takes a commit diff
x and a prefix for a commit message pm. We pass pm to the
decoder since the output is expected to be its continuation.
Optionally, we may include an additional commit context cm
(e.g., containing this author’s commit history). During training,
we concatenate it with the ground truth commit message and
build a target sequence ycm = (cm, [SEP],y), where [SEP]
is a special token. We compute and propagate loss only for
the message y. During inference, we concatenate it with the
prefix pm in the same manner.

LLM approach. In contrast with the CMG approaches,
LLMs mostly follow the decoder-only architecture instead
of the encoder-decoder. Also, we focus solely on evaluating
the in-context learning abilities of LLMs, i.e., we do not
consider fine-tuning. Hence, several differences arise. The
input for an LLM is a single sequence of tokens, often referred
to as prompt. LLM outputs a continuation for the given
prompt. There are many techniques for prompt engineering
(i.e., the process of choosing the best-performing prompt) [47],
however, we focus on a simple zero-shot setting as a baseline.
Specifically, we provide the model only with a simple instruc-
tion to complete the given commit message prefix based on
commit diff and, optionally, additional commit context.

IV. COMMIT HISTORY & DIVERSITY OF DATA

The second important improvement is utilizing the previous
commit messages, as shown in Figure 2, which requires
training the models on the appropriate data. In a recent
overview, Tao et al. [15] highlighted that the majority of
the available CMG datasets suffer from at least one of the
following limitations: (a) only the Java language; (b) small
scale of 20,000–100,000 commits; (c) limited information
about each commit (hence, no way to trace back to the original
commit on GitHub).

To mitigate these issues, Tao et al. [15] built a novel dataset
called MCMD. However, we argue that there are two more
important limitations in the existing CMG datasets: significant
tampering with the original commit history and restrictive data
filtering. The former undermines the validity of experiments
with commit history and limits the possibility of taking into
account individual characteristics of specific developers and
projects, while the latter impedes the ability to learn potential
conventions among a diverse range of commits and to evaluate
on them. Let us now describe these limitations.

Tampering with the original commit history. To the best
of our knowledge, at the time of publishing, our work is the
first to explore the commit message history as an additional
source of information for generating commit messages. We
observe that preserving the original commit history was out
of scope for the majority of existing published CMG datasets.
This shortcoming manifests itself in one of the following
ways: (a) preserving only a small fraction of the original
set of commits due to strict filters [8], [20]; (b) perform-
ing train/validation/test split randomly, not by authors or by
projects [8], [11], [12], [16], [20], [23], [32]; (c) downsampling
(i.e., selecting a subset) from the original set of commits
randomly, without considering authors or projects [15], [16].

Restrictive data filtering. Even when it comes to individual
commit messages, existing works usually apply restrictive
filterings that relate both to the messages themselves and
the diffs. Notice that we do not count as restrictive filtering
those steps that aim to lower the number of automatically
generated examples (e.g., dropping merge or revert commits).
Let us highlight the most common and important filters that
researchers used in previous works. First, there are filters that
relate to commit messages:

— First Sentence. Developers often use the first sentence
of a commit message as a concise summary of the entire
message [8]. Many CMG papers opt to extract the first
sentence from commit messages as a target sequence.

— Message Structure. Commit messages from open-source
projects vary drastically in terms of writing styles, and some
filters are employed by CMG papers to restrict this variety.
A notable example is the Verb-Direct Object (V-DO) filter,
which only allows messages that start with a Verb followed
by a Direct Object clause [8] (e.g., refactor code, but not minor
refactoring). Another option is filtering out commit messages
that do not begin with one of the curated verbs [16].

— Message Length. This filter is usually targeting the
number of tokens in commit messages.

Other filters target commit diffs:
— Only Code. Some studies only consider commits that

only modify source code files (i.e., .java for Java).
— Diff Length. This filter is usually targeting the number of

tokens in diffs. Other variations include the number of changed
files or chunks (changed lines grouped together).

We studied the corresponding papers and replication pack-
ages of existing CMG datasets and provide the resulting
statistics on the usage of each filter in Table I. First Sentence,
Message Structure, Message Length, and Diff Length are used
in more than half of existing CMG datasets. The only dataset
that does not employ any of these filters is the one from the
work of Loyola et al. [9], however, it only contains commits
from 12 specific projects. Also, we note that the dataset from
the work of Jiang et al. [8] and its filtered version NNGen [20]
are the most common for evaluation of CMG models [11],
[13], [29], [30], and several subsequent works employ the same
processing pipeline for their datasets [11], [23].

There is evidence for the restrictiveness of these filters.
Jiang et al. [48] explored 1.6 million commit messages from
top 1,000 Java projects, and their findings show that 53% of
messages do not follow the Verb-Direct Object structure and
18% of the messages have more than one sentence. In the
later work, Jiang et al. [8] employ the Message Length and
Diff Length filters for 30 and 100 tokens, respectively. This
filtered 1.8M commits into 75K commits (a reduction of 96%).

Drastic reductions used in previous research datasets impede
the ability to study the history-based personalization of commit
messages. In our work, we aim to bridge this gap by collecting
a new large-scale, multilingual, history-aware, diverse dataset
called CommitChronicle, and studying whether the history and
filterings significantly influence the results.

V. THE COMMITCHRONICLE DATASET

A. Data Collection

Choosing repositories. As our source of information, we
chose GitHub, a large platform for hosting software projects.
We used the GitHub Search tool [49] on January 25th, 2023
to select specific repositories for subsequent data mining. To
filter only mature projects, we set the inclusion criteria based
on the existing guidelines [50], similar to other works in
SE research [51], [52]: 50+ stars, 10+ contributors, 1000+

TABLE I
STATISTICS ON RESTRICTIVE FILTERS IN EXISTING CMG DATASETS.

CMG Dataset Commit message filters Commit diff filters

First Sentence Message Structure Message Length Only Code Diff Length (# tokens) Diff Length (other)

Loyola et al. [9] – – – – – –
Jiang et al. [8] + V-DO ≤ 30 tokens – ≤ 100 tokens –
NNGen. [20] + V-DO ≤ 30 tokens – ≤ 100 tokens –

PtrGNCMsg [11] + V-DO ≤ 30 tokens – ≤ 100 tokens –
CoDiSum [12] – – ≤ 20 tokens + ≤ 200 tokens –

CoReC [23] + V-DO ≤ 30 tokens – ≤ 100 tokens –
ATOM [32] – – ≤ 20 tokens + – ≤ 5 chunks
MCMD [15] + – – – – –

CommitBERT [16] + Verbs – + – ≤ 2 files

Total 6/9 5/9 6/9 3/9 5/9 2/9

commits, created at least two years ago, has a permissive
license (Apache-2.0, MIT, BSD-3-Clause), not a fork. In total,
we obtained 12.4k projects fitting our criteria.

Collection process. The data collection took place on
February 9th, 2023. We used PyDriller [53] to collect commits.
We collected all non-merge commits made after January 1st,
2017, opting to avoid earlier commits since they might be
less relevant. In order to fit into reasonable resources for
data processing, we also set the upper limit on the number
of changed lines in a single commit to 10,000. In total, we
obtained 27.4M commits.

B. Data Processing
Splitting by projects. To evaluate the models on the

previously unseen projects and to avoid breaking the commit
history, we split the data into the train, validation, and test
sets by repositories with the 80%/10%/10% ratio adopted in
previous work [15].

Filtering outliers. The main purpose of this stage is to
drop examples that are both highly atypical and require a lot
of time and memory to process. We calculated percentiles for
the number of tokens (obtained via simple tokenization by
whitespaces), number of characters, and number of modified
files. We dropped examples out of the [5%, 95%] percentile
range. We provide the exact percentile values in our online
appendix [27]. This resulted in 21M commits, with 6.4M
commits dropped (23.32% of commits from the initial step).

Commit message processing. Unlike most of the exist-
ing CMG datasets, we refrained from processing that would
restrict the diversity of commit messages. Nevertheless, we
adopted the best practices to filter out automatically generated
or irrelevant commit messages, including messages with non-
ASCII symbols [48], trivial messages [20], and merge and
revert messages [8]. In addition, we identified and removed
project-specific content from the messages, including URLs,
emails, and references to issues or pull requests [54]. We
provide all the regular expressions in our online appendix [27].
In total, this resulted in 19.2M commits, with 1.8M commits
dropped (8.81% of commits from the previous step).

Commit diff processing. We store diffs as a list of file
modifications, where each modification includes type (modi-
fying file, creating file, deleting file, etc.), path to file before

and after commit, and diff as obtained from Git. For diffs, we
merge several consecutive whitespaces to save up disk space.
Also, we drop commits with empty diffs. In total, this resulted
in 18.6M commits, with 591K commits dropped (3.08% of
commits from the previous step).

Deduplication. To ensure that our evaluation results are
not inflated, we conducted exact hash deduplication of our
dataset. Specifically, we group commits that share the same
MD5 hash for their messages or diffs, and keep a single
commit instance from each group. In total, we found and
dropped 4.6M duplicate commits (24.59% of commits from
the previous step). This resulted in 14.0M commits.

Dropping commits from overlapping authors. To prevent
any overlap between commit authors in the training and eval-
uation sets, we removed all commits from authors who were
present in either the validation or test set from the training set.
Out of 488.5K authors in the training set, we identified 54.0K
overlapping authors (11.07%). In total, this resulted in 10.8M
commits, with 3.2M commits dropped (22.55% of commits
from the previous step).

Dropping commits from bots. It is important to note
that open-source projects frequently employ software bots to
automate certain activities [55]–[58]. To further lower the
number of automatically generated commits, we drop all
commits from the authors that either are present in existing
bot datasets [55], [58], [59] or have the suffix “bot” in their
names [56]. Specifically, we identified 902 out of 603K authors
as bots and dropped 165.8K commits (1.52% of commits from
the previous step). In total, this resulted in 10.7M commits,
which is the final number of commits in our dataset.

Name disambiguation. After all the processing, we re-
place the authors’ names and emails with unique identifiers
to prevent personal information disclosure. Since the same
user might appear under several combinations of name and
email (e.g., work email and personal email), we employ a
name disambiguation tool gambit [60] to obtain identifiers
and merge authors together. gambit was shown to achieve
near-perfect results for the authors from the Gnome GTK
project. gambit calculates text similarity metrics for all pairs of
authors: since processing all author pairs in our large dataset
would be infeasible, we limited name disambiguation to the

TABLE II
NUMBER OF COMMITS IN THE OBTAINED COMMITCHRONICLE DATASET

FOR EACH PROGRAMMING LANGUAGE. LANGUAGES ARE SORTED BY THE
TOTAL NUMBER OF CORRESPONDING COMMITS.

Language Train Validation Test Total

Python 1,330,155 212,563 247,421 1,790,139
JavaScript 1,076,877 169,502 229,720 1,476,099

Java 952,162 200,035 204,862 1,357,059
TypeScript 936,697 177,258 198,272 1,312,227

C++ 830,683 201,716 123,725 1,156,124
Go 672,045 133,954 134,699 940,698
C# 425,642 84,708 65,528 575,878
C 309,153 57,970 38,340 405,463

Rust 240,037 60,788 45,167 345,992
Ruby 181,916 39,912 33,433 255,261
PHP 178,556 32,293 36,618 247,467

Kotlin 154,276 29,781 28,021 212,078
Shell 117,927 13,902 27,019 158,848
Swift 101,274 28,227 8,938 138,439
Nix 2,526 86,022 8,108 96,656

Groovy 23,262 1,745 38,799 63,806
Dart 42,061 17,527 2,895 62,483

Elixir 41,562 3,380 5,874 50,816
Objective-C 32,517 1,294 7,708 41,519

Smalltalk 10,130 1,465 1,120 12,715

Total 7,659,458 1,554,042 1,486,267 10,699,767

authors committing to the same repository. Consequently, if
some author committed to several repositories, they will have
different identifiers for each repository. Due to this limitation,
we performed two preceding steps related to commit authors
before name disambiguation rather than after it.

C. Dataset Overview

General statistics. Table II presents the resulting number of
commits in our dataset. Notice that we performed the splitting
by repositories, which resulted in the uneven distribution in
terms of commits, especially for low-resource languages (e.g.,
Nix or Groovy). After all processing, we retained 10.7M of
the initial 27.4M commits (38.98%), with the most restrictive
stages being Filtering outliers and Deduplication, which are
necessary for data cleaning. In terms of projects, we retained
11.9k of the initial 12.4k projects (95.97%). Following the
MCMD dataset [15], we include not only diffs and messages
but also rich metadata about each commit, including authors
and timestamps necessary for experiments with the commit
history, as well as repository names and commit hashes, which
allow researchers to gather additional information if needed.

Filters and commit history statistics. In Section IV, we
observed that many existing CMG datasets employ restrictive
filters. CommitChronicle is large-scale and multilingual, hence,
it is representative to assess the degree of restrictiveness
for each filter that other researchers used previously. We
implement the most frequent filters and calculate the num-
ber of affected commits for each of them. We provide the
implementation for each filter in our online appendix [27].
Our findings show that Diff Length ≤ 100 Tokens and Verb-
Direct Object are the most restrtictive filters: in our dataset, we
would have excluded 84% and 64% commits, respectively, if
we employed these filters. With First Sentence, 17% commits

would be filtered out. Finally, Message Length ≤ 30 Tokens
would only affect 7% commits, which suggests that commit
messages tend to be concise in open source projects.

Another shortcoming of existing CMG datasets outlined
in Section IV that makes them unsuitable for experiments
with commit history is that they either do not provide the
required metadata or tamper with the original commit history.
In contrast, we provide the authors’ identifiers and timestamps
for all commits in our dataset. As for the commit histories,
even after cleaning the data to ensure its quality, on average,
we still retain 67% of commits in each history, which we
consider enough for meaningful experiments.

VI. METHODOLOGY

We evaluate our two ideas for helping developers write high-
quality commit messages: commit message completion instead
of generation, as well as training and evaluating the models on
the newly-collected history-aware and diverse CommitChron-
icle dataset. We conduct experiments with all four possible
configurations shown in Figure 2. To thoroughly cover our
two major ideas, we designed four research questions:

• RQ A1. How do state-of-the-art CMG approaches per-
form in the completion setting?

• RQ A2. How do LLMs perform in comparison with state-
of-the-art CMG approaches?

• RQ B1. How does using commit message history as an
additional input affect the models’ quality?

• RQ B2. How do state-of-the-art CMG approaches per-
form with and without common data filtering steps?

In this section, we describe in detail the methodology for
answering these research questions.

Models. Since our dataset includes many programming
languages rather than focusing on a single one, this makes it
infeasible to adapt the approaches that utilize code structure.
Also, retrieval approaches are not directly applicable to the
completion task. Therefore, we focus on language modeling
or hybrid approaches that do not require structural information.

Specifically, we consider approaches that were shown to
achieve the best performance in a recent CMG study [19]. We
also expand the list with a recent model that was shown to
achieve superior performance on a variety of tasks related to
commit diffs, as well as a powerful LLM.

CodeT5 [24] is a variation of the sequence-to-sequence lan-
guage model T5 [61] that was pretrained on a large amount of
source code with source code-specific pretraining objectives.
It was shown to achieve good performance on a variety of
downstream tasks, including CMG [19].

RACE [19] is a hybrid CMG approach that utilizes similar
commit messages and commit diffs to improve the quality of
a language model. RACE with CodeT5 as a backbone is state
of the art in CMG at the time of writing. We observed that
the retrieval implementation in the RACE replication package
is too demanding for the scale of our dataset both in terms
of memory and time complexity. Hence, we reimplemented
RACE with the retrieval powered by the open-source Approx-
imate Nearest Neighbors (ANN) tool annoy [62].

CodeReviewer [25] is a variation of CodeT5 that was further
pretrained on a large-scale dataset of diffs and code review
comments from GitHub. While code review comments and
commit messages serve different purposes, we still consider
CodeReviewer relevant to the CMG task. In particular, its
pretraining includes objectives for understanding commit diffs,
which has the potential to bring value for the CMG task.

GPT-3.5-turbo is a recent general-purpose LLM from
OpenAI. It is officially recommended to be used instead of
Codex, as Codex has been deprecated as of March 2023 [63].
We only aim to obtain a reasonable baseline of possible CMG
performance of LLMs, hence, we leave the experiments with
the more sophisticated GPT-4 model to future research.

Training and evaluation setting. For all CMG models (i.e.,
all models except for GPT-3.5-turbo), we choose the base
configuration, since it is the only configuration available for
CodeReviewer, and it was shown to be superior over small
configuration [19]. For all models, we set the maximum source
length and target length to 512 tokens.

We use the mixed precision for CMG models to accelerate
both training and evaluation. We follow the hyperparameters
setting from the most recent CMG study [19]. Specifically,
we use the AdamW optimizer with 2× 10−5 peak learning
rate, no weight decay, and a linear warmup strategy with 100
warm-up steps. The training is conducted either on a single
NVIDIA TITAN RTX GPU or on 4 NVIDIA T4 GPUs via the
Distributed Data Parallel (DDP) framework. Effective batch
size is set to 32 for all runs, with gradient accumulation due
to the limited GPU memory when needed. Due to the large-
scale nature of our dataset, we train all the models for 1 epoch
only, which makes 7.6M examples and around 3B tokens.
During the evaluation, we use beam search with width 5 as
the decoding strategy, set the maximum number of generated
tokens to 15, and allow early stopping when a special end-of-
sequence token is produced.

For GPT-3.5-turbo, we access the model through the official
OpenAI API. OpenAI API provides several configurable pa-
rameters for completion endpoints. We set the temperature to
0.8 and top-p to 0.95, as it was done in previous works [38],
[41]. To match our setting for the CMG approaches, we set
the maximum generation length to 15 tokens and truncate the
diffs to 512 tokens when constructing prompts.

Models’ input. We mimic a real-world completion scenario
by passing the first X% of characters of each commit message
into the context. We experiment with several values of X —
0% (generation setting), 25% and 50% (completion settings).

For GPT-3.5-turbo, we instruct it with zero-shot prompting.
Note that it is a chat model, so the expected data format differs
from completion models. We rely on official guidelines to
properly define the input in the required format. We provide
all the prompts in our online appendix [27].

All the CMG models that we consider utilize Byte-Pair
Encoding (BPE) [64] subword tokenization algorithm. Hence,
for completion, we face an issue with the tokenization of the
last incomplete word in the prefix outlined by Popov et al. [65].
To mitigate it, we remove the last incomplete word from the

model input and restrict the beam search to produce outputs
consistent with the removed word part. For GPT-3.5-turbo in
the completion setting, we explicitly instruct it to continue
given prefixes rather than generate messages from scratch.

We also experiment with commit message history as addi-
tional context, following the approach we described in Sec-
tion III. For CMG models, we use as many previous commit
messages as fit into the context when concatenated with the
ground truth message, separating historical messages with a
special token [SEP]. For GPT-3.5-turbo, we opt for a simpler
setting due to its availability through paid API and extend
the prompts only with a single previous message from the
commit histories of the respective authors within the same
repository. Hence, we probe a baseline for what GPT-3.5-turbo
may achieve with commit message history.

Evaluation metrics. We employ three metrics commonly
used to evaluate the quality of generated commit messages:

• B-Norm is a version of BLEU [28] that was shown to be
the most in line with human judgment on the quality
of commit messages by Tao et al. [15]. BLEU is a
metric based on the precision in terms of overlapping
n-grams (i.e., contiguous sequences of n words) between
generated and reference sequences. It is used in most of
prior commit message generation works [8], [15], [20].

• Edit Similarity (EdSim) is a metric based on the Leven-
shtein distance [66] between the predicted and reference
texts. It is suitable for evaluating completion systems
because users can accept slightly wrong suggestions as
long as not too many edits are required [22].

• ExactMatch (EM) measures the percentage of predicted
sequences that exactly match the reference text.

We not only report the metrics between full predictions and
targets but also investigate how the quality evolves with the
number of generated tokens. In addition to the metrics for
full sequences, we calculate metric values between prefixes of
predictions and targets. For ExactMatch, we report the values
for prefixes of 1 and 2 tokens, since perfect predictions quickly
deteriorate to near-zero values. For B-Norm, we report metrics
for prefixes of 4–10 tokens, since the implementation we use
expects 4-grams to contribute to the final score. For EdSim,
we report metrics for 1–10 tokens.

Data. We use the CommitChronicle dataset described in
detail in Section V. However, we observe that generating
predictions for the whole test set with 1.5 million commits
would require an implausible amount of time. We obtain a
subsample CMGtest as follows: (a) we exclude the reposi-
tories with the number of commits more than 95% percentile
(4,161 commits); (b) we downsample repositories for frequent
languages to 17 repositories, to cap the number of commits
at around 20K per language. We do not downsample less
represented languages from Table II, and keep a reasonable
trade-off between the data quantity and diversity. In total,
CMGtest contains 204, 336 commits.

Moreover, since we focus on LLMs available through
paid API, we select a smaller yet subsample for all related
experiments to keep the costs reasonable. Specifically, we

TABLE III
RESULTS FOR CMG APPROACHES ON CMGtest . EdSim STANDS FOR Edit
Similarity, EM STANDS FOR ExactMatch. CoRev IS THE CODEREVIEWER

MODEL [25]. PERCENTAGES REPRESENT THE LENGTH OF THE PROVIDED
MESSAGE PREFIX, WITH 0% BEING THE GENERATION TASK.

Approach B-Norm EdSim EM@1 EM@2 №

0%
(G

en
.)

CodeT5, history 16.80 30.91 17.68 4.27 1
RACE, history 16.91 31.15 17.95 4.36 2
CoRev, history 16.78 30.74 17.83 4.38 3

CodeT5 15.12 28.71 10.90 3.03 4
RACE 15.32 29.02 11.37 3.07 5
CoRev 15.15 28.76 10.87 3.05 6

25
%

(C
om

pl
.) CodeT5, history 21.94 33.31 44.98 13.10 7

RACE, history 22.16 33.78 45.36 13.40 8
CoRev, history 21.84 32.90 45.58 13.28 9

CodeT5 17.91 30.54 45.35 12.92 10
RACE 18.38 30.91 46.62 13.45 11
CoRev 18.10 30.93 46.05 13.35 12

50
%

(C
om

pl
.) CodeT5, history 26.90 33.95 47.45 12.75 13

RACE, history 27.28 34.69 47.84 13.26 14
CoRev, history 26.94 33.76 48.10 12.90 15

CodeT5 24.13 32.74 49.94 14.03 16
RACE 24.74 33.22 50.68 14.38 17
CoRev 24.35 33.20 50.90 14.59 18

obtain LLMtest by randomly selecting 10 authors with 10–50
commits for each programming language from CMGtest.
In total, LLMtest contains 4, 025 commits. Note that many
previous works used comparable or even smaller datasets when
experimenting with LLMs [38], [41], [43], [44].

VII. RESULTS & DISCUSSION

Let us now describe the results of our experiments. We use
paired bootstrap resampling [67] with 99% confidence level to
test statistical significance across different models and settings,
i.e., to compare a pair of models, we randomly sample with
replacement, generating a sample of the same size as the test
set, and compute metrics for both models on this new sample;
we repeat the process 1, 000 times and declare a winner only
if it outperforms the other model in 99% of cases. Due to the
lack of space, we only share several plots with metrics between
prefixes related to particularly interesting findings. We provide
all the remaining plots in our online appendix [27].

A. Commit Message Completion

RQ A1: How do state-of-the-art CMG approaches per-
form in a completion setting? We present the metrics for the
CMG approaches in Table III. First, we observe that the values
of metrics tend to grow as we increase the context ratio (i.e., go
from generation to completion), especially in ExactMatch and
B-Norm metrics. For example, for CodeT5, ExactMatch@1
grows from 10.90 (line 4, 0%) to 45.35 (line 10, 25%), to
49.94 (line 16, 50%). We confirm that improvements for all
models and metrics are statistically significant. Hence, to some
extent, we confirm the previous finding [34] — completion is
a simpler task than generation and might be a good choice to
employ existing models to bring value to actual users.

4 6 8 10
Number of tokens in prefixes

0.12

0.14

0.16

0.18

0.20

M
et

ric
 V

al
ue

B-Norm

2 4 6 8 10
Number of tokens in prefixes

0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34

Edit Similarity

RACE Diff
RACE History + Diff

CodeT5 Diff
CodeT5 History + Diff

CodeReviewer Diff
CodeReviewer History + Diff

Fig. 3. Metrics between prefixes on CMGtest for 0% context ratio
(generation setting) for CMG approaches. Dashed lines correspond to models
with history.

4 6 8 10
Number of tokens in prefixes

0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275

M
et

ric
 V

al
ue

B-Norm

2 4 6 8 10
Number of tokens in prefixes

0.2

0.3

0.4

0.5

0.6
Edit Similarity

RACE Diff
RACE History + Diff

CodeT5 Diff
CodeT5 History + Diff

CodeReviewer Diff
CodeReviewer History + Diff

Fig. 4. Metrics between prefixes on CMGtest for 25% context ratio
(completion setting) for CMG approaches. Dashed lines correspond to models
with history.

Next, we observe that there is but a small difference in abso-
lute metrics values between state-of-the-art CMG approaches,
and their ranking is not consistent across different metrics and
different context ratios. Additionally, we observe that plots for
metrics between prefixes for all the models exhibit very similar
patterns — the models are almost indistinguishable. We share
the plots for the 0% context ratio setting in Figure 3 and the
plots for the 25% context ratio setting in Figure 4.

We confirm that the superiority of RACE over both CodeT5
and CodeReviewer is statistically significant in all context
ratios. In the 0% context ratio setting, the difference between
CodeT5 and CodeReviewer is not statistically significant, how-
ever, CodeReviewer is confirmed to be superior in both com-
pletion settings. This outcome is not completely surprising,
since all the models are based on CodeT5, however, previous
works suggest significantly larger gaps in performance. For
RACE, our setup is different from the original in two aspects:
we include more diverse commits in the dataset and we switch
from the exact retrieval implementation to the approximate
one. As for CodeReviewer, perhaps, the fact that it was
intended for the code review tasks plays a larger role, since
code review data can be different from commit messages.

Finally, from Figure 4 we observe that all the metrics
values in the completion setup decrease with the prediction
length, which is consistent with the work on comment com-
pletion [34]. However, for generation, from Figure 3 we note
that Edit Similarity for short sequences is worse than for the se-

TABLE IV
RESULTS FOR CMG APPROACHES AND GPT-3.5-TURBO ON LLMtest .

ALL THE RESULTS ARE PRESENTED FOR THE 25% CONTEXT RATIO
(COMPLETION SETTING). EdSim STANDS FOR Edit Similarity, EM STANDS

FOR ExactMatch. CoRev IS THE CODEREVIEWER MODEL [25].

Approach B-Norm EdSim EM@1 EM@2 №

CodeT5, history 21.11 32.31 43.68 12.45 1
RACE, history 21.14 32.35 44.92 12.93 2
CoRev, history 21.35 32.68 45.69 13.15 3

CodeT5 17.16 30.02 45.19 12.85 4
RACE 17.54 30.13 46.68 13.33 5
CoRev 17.34 30.45 45.96 13.03 6

GPT-3.5-turbo, history 13.24 27.83 34.34 10.09 7
GPT-3.5-turbo 11.48 26.35 21.84 5.99 8

quences of average length. We investigate the examples where
Edit Similarity for sequences of 4 tokens is higher than Edit
Similarity for sequences of 2 tokens. We find that many cases
are due to conventions, which suggest special prefixes for com-
mit messages, e.g., Conventional Commits [68]. Consider this
example: the ground truth commit message is feat: add
hideSampleTab option, and the corresponding predic-
tion is Add hideSampleTab option. CMG approaches
can fail to correctly determine the convention for the particular
case. This finding highlights the variety of writing styles and
conventions for commit messages that exist in the wild. Since
in the completion setup all the metrics decrease, this problem
may be less relevant to completion.

Summary of RQ A1. The completion task is easier than
generation. All CMG approaches exhibit similar patterns,
but RACE is better than both CodeT5 and CodeReviewer.
For completion, performance consistently decreases as
the number of tokens to predict grows. For generation,
there is an additional challenge of correctly generating
the beginning of the sequence.

RQ A2: How do LLMs perform in comparison with
state-of-the-art CMG approaches? To answer this research
question, we obtain predictions from GPT-3.5-turbo on the
LLMtest dataset. Since LLMtest is a subset of CMGtest, we
also recalculate the metrics for all CMG approaches using only
predictions for LLMtest. We present the results in Table IV.
In Figure 5, we also present plots for metrics between prefixes
on LLMtest. Similar to CMGtest, different CMG approaches
exhibit very similar patterns, so we only include metrics for
CodeT5 for clarity. Due to the lack of space, we only include
the results for the 25% context ratio. We note that our findings
mostly hold true for the remaining settings as well. We provide
the rest of the results in our online appendix [27].

While the results of the CMG approaches on LLMtest are
slightly different from the results on a larger dataset CMGtest,
they remain of the same magnitude, and most patterns still
hold true. Hence, we consider LLMtest a reliable dataset to
estimate LLM performance. We observe that the metrics values
between full predictions and targets are lower for GPT-3.5-

4 6 8 10
Number of tokens in prefixes

0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250

M
et

ric
 V

al
ue

B-Norm

2 4 6 8 10
Number of tokens in prefixes

0.2

0.3

0.4

0.5

0.6
Edit Similarity

CodeT5 Diff
CodeT5 History + Diff

GPT-3.5-turbo Diff
GPT-3.5-turbo History + Diff

Fig. 5. Metrics between prefixes on LLMtest for 25% context ratio
(completion setting) for CodeT5 and GPT-3.5-turbo. Dashed lines correspond
to models with history.

turbo (line 8) than for the CMG approaches (lines 4–6). We
confirm that the difference is statistically significant.

Figure 5 shows that while GPT-3.5-turbo is worse than
CodeT5 for short sequences, it becomes better as the num-
ber of tokens to predict grows. By empirically investigating
predictions, we note that GPT-3.5-turbo often tries to produce
detailed messages and completely exhausts the maximum
tokens restriction, while CMG models often stop early. In
the 25% context ratio setting, the median number of tokens
for GPT-3.5-turbo and for all CMG models is 9 and 4,
respectively. Additionally, we observe that GPT-3.5-turbo may
disregard the given prefixes and generate novel messages
instead. With CMG approaches, we explicitly restrict the beam
search procedure to consider only hypotheses starting from the
given prefixes, which is not possible for the LLM available
through the API. This might be the underlying reason for the
CMG approaches being especially superior in terms of metrics
between short prefixes and ExactMatch.

Summary of RQ A2. Generally, and especially for
short sequences, GPT-3.5-turbo is worse than CMG ap-
proaches. However, it may be a better choice for gener-
ating long and detailed messages. Moreover, we note that
our LLM setting is very simple, and further investigation
is required to uncover the full potential of LLMs in commit
message generation and completion tasks.

B. History and Diversity of Data

RQ B1: How does using commit message history as an
additional input affect the models’ quality? From Table III,
we observe that B-Norm and Edit Similarity metrics across
all the models and settings increase when adding history. In
the generation setting, ExactMatch is drastically better for
the models with history (lines 1–3) compared to the models
without history (lines 4–6). However, for completion, history
slightly distracts the models (lines 7–9 with history and lines
10–12 without history, 25% context ratio). We confirm that the
impact of history in terms of B-Norm and Edit Similarity is
statistically significant, as well as for ExactMatch in the gener-
ation setting. However, not all the models exhibit statistically
significant difference in ExactMatch in completion settings.

From Figure 3 with the plots with metrics between prefixes
in the generation setting, we observe that history improves the
results on short sequences. Hence, commit message history
might be helpful to determine suitable conventions for the
current author and repository when generating messages from
scratch. However, plots with metrics between prefixes in the
completion setting from Figure 4 show that adding the history
barely impacts the completion of a given message prefix: the
plots for the models with and without history follow similar
patterns, and the models with history are even worse in some
cases. This might indicate that the beginning of the commit
message is extra challenging to generate correctly. Since the
beginning of the commit message is given in the completion
setting, the commit message history brings little value.

Apart from the CMG approaches, we also experiment with
providing GPT-3.5-turbo a previous message from the commit
message history. We observe that GPT-3.5-turbo benefits from
history (lines 7-8 from Table IV) and we confirm that the
difference is statistically significant.

Summary of RQ B1. Our approach of integrating commit
message history into CMG approaches turned out to be
useful for generation, but the results for completion are
conflicting. In contrast, GPT-3.5-turbo benefits from the
history both in the completion and generation setting.
Overall, commit message history holds potential, but more
exploration is necessary.

RQ B2: How do state-of-the-art CMG approaches per-
form with and without common data filtering steps? To
answer this research question, we study the most frequent
filters, namely, First Sentence, Verb-Direct Object, and Diff
Length ≤ 100 tokens. We do not consider Message Length
≤ 30 tokens, because all the models are allowed to generate
only up to 15 tokens, so naturally the metrics for the subset
where all the targets are longer would be low.

In our CMGtest dataset, 10, 385 examples (5.08%) fit all
the filters and 22, 332 (10.93%) examples fit neither of the
filters. In Table V, we present the metrics for the Filtered
subset, the Out-of-Filters subset of 10, 385 examples (fitting
no filters), and a random subset of 10, 385 examples. Due to
the lack of space, we only include the results for the 25%
context ratio. We note that our findings mostly hold true for
the remaining settings as well. We provide the rest of the
results in our online appendix [27].

We observe from Table V that all CMG approaches achieve
higher results on the Filtered subset (lines 4–6) than on the
Random subset (lines 10–12), and the results on the Out-of-
Filters subset (lines 16–18) are by far the lowest (except for
ExactMatch). The difference is statistically significant for all
the models, with an exception for ExactMatch for some cases.
Therefore, using the Filtered subset may not provide a reliable
estimate of the quality on a diverse set of commits. Moreover,
generation or completion for Out-of-Filters commits is more
challenging, and current approaches seem to struggle with this
task. Note that the data in the Out-of-Filters subset was subject
to cleaning as described in Section V.

TABLE V
RESULTS FOR CMG APPROACHES ON FILTERED, RANDOM, AND

OUT-OF-FILTERS SUBSETS OF CMGtest WITH 10, 385 EXAMPLES. ALL
THE RESULTS ARE PRESENTED FOR THE 25% CONTEXT RATIO

(COMPLETION SETTING). EdSim STANDS FOR Edit Similarity, EM STANDS
FOR ExactMatch. CoRev IS THE CODEREVIEWER MODEL [25].

Approach B-Norm EdSim EM@1 EM@2 №

Fi
lte

re
d

CodeT5, history 29.21 39.36 51.55 16.29 1
RACE, history 29.39 40.25 52.35 17.00 2
CoRev, history 29.22 39.35 51.99 16.89 3

CodeT5 22.77 35.11 48.51 15.55 4
RACE 23.48 35.85 49.91 16.28 5
CoRev 22.88 35.56 49.04 15.67 6

R
an

do
m

CodeT5, history 21.74 33.24 44.26 13.43 7
RACE, history 22.16 33.81 45.12 13.72 8
CoRev, history 21.71 32.92 45.11 13.42 9

CodeT5 17.66 30.48 44.88 12.93 10
RACE 18.28 30.95 46.24 14.05 11
CoRev 18.04 30.94 45.51 13.82 12

O
ut

-o
f-

fil
te

rs CodeT5, history 5.61 16.00 44.55 10.52 13
RACE, history 5.52 15.54 44.48 10.02 14
CoRev, history 5.41 15.42 45.38 10.40 15

CodeT5 6.21 16.44 47.41 10.98 16
RACE 6.16 16.21 47.68 11.47 17
CoRev 6.37 16.71 48.79 11.64 18

We also check whether any of our previous findings about
commit message history differ when we consider only Filtered
or only Out-of-Filters subsets. In Table V, when using commit
message history together with diffs on the Filtered subset (lines
1–3), CMG approaches perform better than when only using
diffs (lines 4–6). These results are statistically significant.
Moreover, we observe that the difference between the models
with and without history tends to be higher for the Filtered
subset than it is for the Random. For example, consider RACE:
the increase in B-Norm on the Filtered subset is 25.17%
(from 23.48 to 29.39), while on the Random subset, it is
21.23% (from 18.28 to 22.16). In contrast, on the Out-of-filters
subset, additional history input decreases the performance of
the CMG approaches. In completion settings, these results
are statistically significant. These results may indicate that
choosing the correct conventions is not the only challenge for
commits that do not fit the common filters or that our method
of integrating commit message history into CMG approaches
is not tailored for this specific case.

Summary of RQ B2. For the Out-of-Filters subset, the
inclusion of history does not improve the results, which
requires additional exploration. The average results of
CMG approaches are different from both Filtered and Out-
of-Filters subsets — Filtered results are better, while Out-
of-Filters results are worse. Hence, the usage of restrictive
filtering makes the evaluation results less representative.

VIII. RELATED WORK

A question of the practical applicability of existing com-
mit message generation approaches was raised in the recent
study [14]. In several studies, over 50% of generated messages

were rated as low-quality by human experts [8], [14], [20].
As a way to overcome this issue, Wang et al. [14] propose a
quality assurance framework QACom that determines whether
a given message is semantically relevant for a given diff. It
can be used on top of any CMG approach to avoid showing
low-quality predictions to users.

In our work, we propose to explore another option —
repurposing commit message generation approaches for the
completion task. Researchers have already tackled the com-
pletion of code comments [34], [69]. Mastropaolo et al. [34]
explored the performance of a simple n-gram model that
uses only the prefix of a comment typed by the developer
as an input, as well as a Text-To-Text Transfer Transformer
(T5) [61] that utilizes both the prefix and the related code
context. Commit messages are similar to code comments in
the sense that both are natural language artifacts for software
maintenance and comprehension. However, both domains have
their unique challenges. To the best of our knowledge, there
is no published work on the completion of commit messages.

IX. THREATS TO VALIDITY

Internal validity. We identified and addressed these threats:
Data quality. Since we collect a large number of commits

from open-source repositories, their quality is a potential threat
to validity. To mitigate this threat, we followed best practices
from previous work to clean the data (e.g., deduplicate and
remove messages from bots) and extensively described our
processing pipeline.

Hyperparameters. Since we consider several approaches and
settings and train them on a large-scale dataset, it is infeasible
to tune optimal hyperparameters for each individual approach.
To mitigate this threat, we employed hyperparameters setting
from a previous study by Shi et al. [19].

Implementation Errors. The presence of bugs in the source
code implemented for this study poses a potential threat to
validity. To mitigate this threat, we thoroughly tested the code
and followed software engineering best practices to ensure that
it was written in a clear and organized manner. Despite our
efforts, there is still a possibility of undetected errors being
present in the implementation.

External validity. We identified the following threats:
Model selection. We included several CMG approaches and

a recent general-purpose LLM in our experiments. Still, our
findings may not generalize to the models that were not
considered in this study.

Dataset. Our findings may not transfer to different kinds
of commits that were not present in our dataset, for instance,
commits in other programming languages (beyond the 20 in-
cluded in our dataset) or commits from proprietary codebases.

Even though these threats are important to note, we believe
that they do not invalidate the main contributions of this work
and the important novel ideas that we evaluated.

Verifiability. We provide all the necessary details about
our study to help others replicate. We released publicly the
data [26] and all the code for our models and experiments [27].

X. FUTURE WORK

Our future work aims to expand upon the two ideas
presented in this study. In particular, we only considered a
single way of integrating commit message history, and other
approaches may result in further improvements. Moreover,
our approach implies extending models’ inputs with previous
commit messages. All of the models in our experiments follow
the Transformer architecture [36], whose time complexity
scales quadratically with the number of tokens in inputs,
so longer contexts might harm the performance. Hence, a
promising direction might be to develop a separate model
for producing efficient representations of developers’ writing
style or project conventions based on commit message history.
Likewise, we only investigated a single zero-shot setting for
a single LLM, and other LLMs or more advanced prompt
engineering techniques are worth exploring.

Another important research direction is semantic evaluation.
We followed best practices by using the B-Norm metric [15],
however, all the metrics we employed are based on the overlap
of words or characters between the generated and the reference
messages, which may not fully reflect the semantic quality
aspects, such as adequacy or usefulness. Human evaluation
might uncover new insights for all the RQs addressed in
our work. Alternatively, it could be intriguing to investigate
the applicability of the recent automatic semantic metrics,
including using LLMs as evaluators [70], for CMG task.

Finally, expanding the scope to diverse commits brings
novel challenges. Firstly, there is a possible concern of data
quality, especially regarding the commit messages. Consid-
ering that the notion of commit message quality gained at-
tention in several recent studies [2], [3], additional filtering
of our dataset might be required. Secondly, we believe that
conducting a deeper analysis of the commits that current CMG
approaches struggle with could benefit the field.

XI. CONCLUSIONS

This work sheds light on the potential of two novel ideas
for personalized commit message generation, namely, focus-
ing on the completion task and integrating commit message
history as context. We conduct experiments with several
CMG approaches, including previously proposed models from
the literature, and a recent LLM GPT-3.5-turbo. Our results
suggest that both ideas show promise when implemented in-
dependently, however, yield questionable improvements when
implemented together. Furthermore, we highlight that several
data filtering steps employed in previous works are overly
restrictive and exclude many real-world examples. Based on
our findings, relying solely on the results obtained on filtered
commits might not provide a reliable estimate of the overall
performance. In contrast, commits that fall outside of the
common filters present new challenges to existing CMG
approaches. Finally, we show that the overall quality of GPT-
3.5-turbo in the zero-shot setting is inferior to existing state-of-
the-art CMG approaches, but it has the potential for generating
detailed commit messages.

REFERENCES

[1] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes? An exploratory study in industry,”
in Proceedings of the ACM SIGSOFT 20th International symposium on
the foundations of software engineering, 2012, pp. 1–11.

[2] J. Li and I. Ahmed, “Commit message matters: Investigating impact
and evolution of commit message quality,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 2023,
pp. 806–817.

[3] Y. Tian, Y. Zhang, K.-J. Stol, L. Jiang, and H. Liu, “What makes a good
commit message?” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 2389–2401.

[4] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 422–431.

[5] R. P. L. Buse and W. R. Weimer, “Automatically documenting program
changes,” in Proceedings of the 25th IEEE/ACM International Confer-
ence on Automated Software eEngineering, 2010, pp. 33–42.

[6] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk,
“On automatically generating commit messages via summarization of
source code changes,” in 2014 IEEE 14th International Working Con-
ference on Source Code Analysis and Manipulation, 2014, pp. 275–284.

[7] J. Shen, X. Sun, B. Li, H. Yang, and J. Hu, “On automatic summarization
of what and why information in source code changes,” in 2016 IEEE
40th Annual Computer Software and Applications Conference (COMP-
SAC), vol. 1, 2016, pp. 103–112.

[8] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2017, pp. 135–146.

[9] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for
generating natural language descriptions from source code changes,”
in Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), 2017, pp. 287–
292.

[10] P. Loyola, E. Marrese-Taylor, J. Balazs, Y. Matsuo, and F. Satoh, “Con-
tent aware source code change description generation,” in Proceedings
of the 11th International Conference on Natural Language Generation,
2018, pp. 119–128.

[11] Q. Liu, Z. Liu, H. Zhu, H. Fan, B. Du, and Y. Qian, “Generating
commit messages from diffs using pointer-generator network,” in 2019
IEEE/ACM 16th International Conference on Mining Software Reposi-
tories (MSR), 2019, pp. 299–309.

[12] S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu, “Commit message
generation for source code changes,” in Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-
19, 2019, pp. 3975–3981.

[13] L. Y. Nie, C. Gao, Z. Zhong, W. Lam, Y. Liu, and Z. Xu, “CoreGen:
Contextualized code representation learning for commit message gener-
ation,” Neurocomputing, vol. 459, pp. 97–107, 2021.

[14] B. Wang, M. Yan, Z. Liu, L. Xu, X. Xia, X. Zhang, and D. Yang,
“Quality assurance for automated commit message generation,” in 2021
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2021, pp. 260–271.

[15] W. Tao, Y. Wang, E. Shi, L. Du, S. Han, H. Zhang, D. Zhang, and
W. Zhang, “On the evaluation of commit message generation models: An
experimental study,” in 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2021, pp. 126–136.

[16] T. H. Jung, “CommitBERT: Commit message generation using pre-
trained programming language model,” in Proceedings of the 1st Work-
shop on Natural Language Processing for Programming (NLP4Prog
2021), 2021, pp. 26–33.

[17] J. Bai, L. Zhou, A. Blanco, S. Liu, F. Wei, M. Zhou, and Z. Li, “Jointly
learning to repair code and generate commit message,” in Proceedings
of the 2021 Conference on Empirical Methods in Natural Language
Processing, 2021, pp. 9784–9795.

[18] J. Dong, Y. Lou, Q. Zhu, Z. Sun, Z. Li, W. Zhang, and D. Hao, “FIRA:
fine-grained graph-based code change representation for automated
commit message generation,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 970–981.

[19] E. Shi, Y. Wang, W. Tao, L. Du, H. Zhang, S. Han, D. Zhang, and
H. Sun, “RACE: Retrieval-augmented commit message generation,” in

Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, 2022, pp. 5520–5530.

[20] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: How far are
we?” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, 2018, pp. 373–384.

[21] M. X. Chen, B. N. Lee, G. Bansal, Y. Cao, S. Zhang, J. Lu, J. Tsay,
Y. Wang, A. M. Dai, Z. Chen et al., “Gmail smart compose: Real-
time assisted writing,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 2287–2295.

[22] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020, pp.
1433–1443.

[23] H. Wang, X. Xia, D. Lo, Q. He, X. Wang, and J. Grundy, “Context-aware
retrieval-based deep commit message generation,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 30, no. 4, pp. 1–
30, 2021.

[24] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, pp. 8696–8708.

[25] Z. Li, S. Lu, D. Guo, N. Duan, S. Jannu, G. Jenks, D. Majumder,
J. Green, A. Svyatkovskiy, S. Fu et al., “Automating code review
activities by large-scale pre-training,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2022, pp. 1035–1047.

[26] A. Eliseeva, Y. Sokolov, E. Bogomolov, Y. Golubev, D. Dig, and
T. Bryksin. (2023) The CommitChronicle dataset. [Online]. Available:
https://doi.org/10.5281/zenodo.8189044

[27] ——. (2023) The source code and supplementary materials.
[Online]. Available: https://github.com/JetBrains-Research/commit
message generation

[28] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[29] K. Etemadi and M. Monperrus, “On the relevance of cross-project
learning with nearest neighbours for commit message generation,”
in Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, 2020, pp. 470–475.

[30] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “CC2Vec: Distributed
representations of code changes,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 518–529.

[31] Y. Huang, N. Jia, H.-J. Zhou, X.-P. Chen, Z.-B. Zheng, and M.-D. Tang,
“Learning human-written commit messages to document code changes,”
Journal of Computer Science and Technology, vol. 35, no. 6, pp. 1258–
1277, 2020.

[32] S. Liu, C. Gao, S. Chen, L. Y. Nie, and Y. Liu, “ATOM: Commit
message generation based on abstract syntax tree and hybrid ranking,”
IEEE Transactions on Software Engineering, vol. 48, no. 5, pp. 1800–
1817, 2020.

[33] V. Bibaev, A. Kalina, V. Lomshakov, Y. Golubev, A. Bezzubov, N. Po-
varov, and T. Bryksin, “All you need is logs: Improving code completion
by learning from anonymous IDE usage logs,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2022, pp. 1269–1279.

[34] A. Mastropaolo, E. Aghajani, L. Pascarella, and G. Bavota, “An empir-
ical study on code comment completion,” in 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2021, pp.
159–170.

[35] A. Svyatkovskiy, S. Lee, A. Hadjitofi, M. Riechert, J. V. Franco, and
M. Allamanis, “Fast and memory-efficient neural code completion,” in
2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), 2021, pp. 329–340.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[37] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” vol. 33, 2020, pp. 1877–1901.

https://doi.org/10.5281/zenodo.8189044
https://github.com/JetBrains-Research/commit_message_generation
https://github.com/JetBrains-Research/commit_message_generation

[38] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[39] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “CodaMosa: Escaping
coverage plateaus in test generation with pre-trained large language
models,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), 2023, pp. 919–931.

[40] S. Kang, J. Yoon, and S. Yoo, “Large language models are few-
shot testers: Exploring LLM-based general bug reproduction,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE), 2023, pp. 2312–2323.

[41] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in the
era of large pre-trained language models,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), 2023, pp.
1482–1494.

[42] J. Y. Khan and G. Uddin, “Automatic code documentation generation
using GPT-3,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, 2022, pp. 1–6.

[43] T. Ahmed and P. Devanbu, “Few-shot training llms for project-specific
code-summarization,” in Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2022, pp. 1–5.

[44] T. Ahmed, S. Ghosh, C. Bansal, T. Zimmermann, X. Zhang, and
S. Rajmohan, “Recommending root-cause and mitigation steps for
cloud incidents using large language models,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), 2023, p.
1737–1749.

[45] OpenAI, “GPT-4 technical report,” arXiv preprint arXiv:2303.08774,
2023.

[46] Y. Liu, T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian, H. He, A. Li,
M. He, Z. Liu et al., “Summary of ChatGPT/GPT-4 research and
perspective towards the future of large language models,” arXiv preprint
arXiv:2304.01852, 2023.

[47] J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt,
“ChatGPT prompt patterns for improving code quality, refactor-
ing, requirements elicitation, and software design,” arXiv preprint
arXiv:2303.07839, 2023.

[48] S. Jiang and C. McMillan, “Towards automatic generation of short sum-
maries of commits,” in 2017 IEEE/ACM 25th International Conference
on Program Comprehension (ICPC), 2017, pp. 320–323.

[49] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in GitHub
for MSR studies,” in 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), 2021, pp. 560–564.

[50] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining GitHub,” in Proceedings
of the 11th working conference on mining software repositories, 2014,
pp. 92–101.

[51] T. Wang, Y. Golubev, O. Smirnov, J. Li, T. Bryksin, and I. Ahmed,
“PyNose: A test smell detector for python,” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2021, pp. 593–605.

[52] K. Grotov, S. Titov, V. Sotnikov, Y. Golubev, and T. Bryksin, “A large-
scale comparison of Python code in Jupyter notebooks and scripts,” in
Proceedings of the 19th International Conference on Mining Software
Repositories, 2022, pp. 353–364.

[53] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python framework
for mining software repositories,” in Proceedings of the 2018 26th
ACM Joint meeting on european software engineering conference and

symposium on the foundations of software engineering, 2018, pp. 908–
911.

[54] Z. Liu, X. Xia, C. Treude, D. Lo, and S. Li, “Automatic generation
of pull request descriptions,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2019, pp. 176–
188.

[55] M. Golzadeh, A. Decan, D. Legay, and T. Mens, “A ground-truth dataset
and classification model for detecting bots in GitHub issue and PR
comments,” Journal of Systems and Software, vol. 175, p. 110911, 2021.

[56] M. Golzadeh, A. Decan, and N. Chidambaram, “On the accuracy of
bot detection techniques,” in Proceedings of the Fourth International
Workshop on Bots in Software Engineering, 2022, pp. 1–5.

[57] T. Dey, S. Mousavi, E. Ponce, T. Fry, B. Vasilescu, A. Filippova, and
A. Mockus, “Detecting and characterizing bots that commit code,” in
Proceedings of the 17th international conference on mining software
repositories, 2020, pp. 209–219.

[58] A. Abdellatif, M. Wessel, I. Steinmacher, M. A. Gerosa, and E. Shi-
hab, “BotHunter: An approach to detect software bots in GitHub,” in
Proceedings of the 19th International Conference on Mining Software
Repositories, 2022, pp. 6–17.

[59] M. Golzadeh, A. Decan, and T. Mens, “Evaluating a bot detection model
on git commit messages,” arXiv preprint arXiv:2103.11779, 2021.

[60] C. Gote and C. Zingg, “Gambit–an open source name disambiguation
tool for version control systems,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), 2021, pp. 80–84.

[61] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21,
no. 1, pp. 5485–5551, 2020.

[62] Spotify. (2023) Annoy: Approximate Nearest Neighbors in C++/Python
optimized for memory usage and loading/saving to disk. [Online].
Available: https://github.com/spotify/annoy

[63] OpenAI. (2023) Code completion (deprecaated). [Online]. Available:
https://platform.openai.com/docs/guides/code

[64] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, pp. 1715–1725.

[65] A. Popov, D. Orekhov, D. Litvinov, N. Korolev, and G. Morgachev,
“Time-efficient code completion model for the R programming lan-
guage,” in Proceedings of the 1st Workshop on Natural Language
Processing for Programming (NLP4Prog 2021), 2021, pp. 34–39.

[66] V. I. Levenshtein, “Binary codes capable of correcting deletions, in-
sertions, and reversals,” Soviet physics. Doklady, vol. 10, pp. 707–710,
1965.

[67] P. Koehn, “Statistical significance tests for machine translation evalua-
tion,” in Proceedings of the 2004 Conference on Empirical Methods in
Natural Language Processing, 2004, pp. 388–395.

[68] C. Commits. (2023) A specification for adding human and machine
readable meaning to commit messages. [Online]. Available: https:
//www.conventionalcommits.org/en/v1.0.0/

[69] A. Ciurumelea, S. Proksch, and H. C. Gall, “Suggesting comment
completions for Python using neural language models,” 2020 IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 456–467, 2020.

[70] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. Xing et al., “Judging LLM-as-a-judge with MT-Bench
and chatbot arena,” arXiv preprint arXiv:2306.05685, 2023.

https://github.com/spotify/annoy
https://platform.openai.com/docs/guides/code
https://www.conventionalcommits.org/en/v1.0.0/
https://www.conventionalcommits.org/en/v1.0.0/

	Introduction
	Background
	Commit Message Completion
	Commit History & Diversity of Data
	The CommitChronicle Dataset
	Data Collection
	Data Processing
	Dataset Overview

	Methodology
	Results & Discussion
	Commit Message Completion
	History and Diversity of Data

	Related work
	Threats to Validity
	Future Work
	Conclusions
	References

