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Why MoveMethod Matters

Top-5 most common refactoring

Improves cohesion, reduces coupling 

Reduces Technical Debt and removes code smells: God Class, Feature Envy, Duplicate Code
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MoveMethod Refactoring to the Rescue

Move to Phone class



Semi-automated process

No automatic recommendations

Current Move Method Workflow in IntelliJ

JetBrains’ IntelliJ IDEA has Move Method 

capabilities
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Approaches for MM Recommendations
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Static analysis (JMove, JDeodorant)
- thresholds, slow (hours), poor scalability

ML (RMove, PathMove) / DL (FeTruth, Hmove)
- need retraining, overwhelm users

? Optimize software quality metrics

Do not align with how developers refactor code

LLMs

- prolific, capture semantic intuition



Key Challenges

LLM Hallucinations  - 80% invalid recommendations

Context window limits – can’t reason over large projects

Workflow fit – needs to be fast and IDE-integrated
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Our Insights

Combine LLM creativity + IDE rigor

Filter hallucination via static preconditions checks in IDE

Semantic embeddings + Refactoring-aware RAG

Few high-quality recommendations (≤3 per class)



MM-Assist: Workflow
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Empirical Evaluation Setup

Two Datasets:

- Synthetic corpus of 235 MM scenarios

- New real-world corpus 210 MM (2024+, OSS), avoids LLM training contamination

Formative study 

Baselines: JMove, FeTruth, HMove, Vanilla LLM

User study: 30 participants, 1 week, own project 
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Results: Synthetic Corpus 
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235 MM scenarios

Metric: Recall@K for top-K recommendations

MM-ASSIST Recall@1 = 67%, Recall@3 = 75%

Baselines: JMOVE ~40%, HMOVE ~26%, FETRUTH only 2–3%

1.7x improvement over best baseline

LLM alone performed better than old tools but still plagued by hallucinations



Results: Real-World Corpus + User study

Replicated 210 OSS refactorings (uncontaminated by LLM training) 

MM-ASSIST Recall@3 = 80% vs 33% (baselines) → 2.4x improvement.

Runtime: ~30 seconds vs hours or days for baselines.

User study: 30 devs, 350 classes analyzed → 83% positive ratings, avg. 7 accepted refactorings/user.

Dev quote: “Skeptical about AI, but glad to delegate grunt work.”
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Executive Summary

First end-to-end LLM-powered Move Method assistant

Key Idea: LLMs (creative)+ IDEs (validation) + Refactoring-Aware RAG (lookup)

- addresses hallucinations + context limits via IDE + RAG

2–4× better recall, 10–100× faster

Trusted by developers (83% positive)

Techniques generalize to other refactorings
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Bonus Slides
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Move Method Refactoring in IntelliJ
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Demo MM-Assist
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Lessons Learned

LLM Critique –

Can be too harsh
High hallucination rate 80%

Task Decomposition helped – instead of 
depending on LLM to do everything

Data leakage problem
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LLM Data Leakage
● Gpt-4o training data cutoff: Oct-2023

• MM in 2015. 

• Instance MM in 2024

• Static MM in 2024
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Your Questions: Core Methodology and RAG 
Pipeline 

Regarding the core methodology, can semantic retrieval meaningfully identify better refactoring targets than 

traditional dependency graph analysis? 

What are the specifics of the RAG pipeline—including the choice of VoyageAI models, the number of retrieved 

classes, and the prompt optimization strategy, and does using partial class summaries for retrieval significantly 

degrade recommendation quality? 

How effective is cosine similarity for code, and what is the justification for weighting package proximity 2x higher 

than the utility metric in the RankingScore formula?
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Tool Design, Usability, and Edge Cases 

From a usability standpoint, how does the tool handle edge cases like finding no suitable candidates (does it fail 

gracefully or hallucinate?) 

What is the workflow for complex "God Classes"? 

What was the rationale for limiting suggestions to three candidates, and does this hinder the full exploration of 

refactoring options without repeated use? 
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Evaluation, Performance, and Generalizability

In terms of the evaluation, are the reported performance gains primarily due to the novel algorithm, or could they be 

attributed to failures or limitations in the baseline tools used for comparison? 

What were the main reasons developers rejected 17.2% of suggestions? 

How does the tool's performance scale to massive codebases? 

How would it translate to dynamic languages like Python? 

What is the expected gain from using a domain-tuned embedding model?
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Cost, Practicality, and Real-World Adoption 

Considering practical adoption, what is the tool's financial viability, and how would its performance and cost change 

if using an open-source LLM instead of a commercial API? 

What are the long-term integration complexities and developer privacy concerns? 

Crucially, what are the potential implications of the LLM introducing "design hallucinations," especially when 

applying such a tool to safety-critical codebases? 

21



Future Work and Potential Improvements 

For future work, beyond improving method-level suggestions by integrating static metrics or creating a personalized 

memory system, can this architecture be extended to support more complex tasks? 

For instance, could it facilitate large-scale architectural refactorings or even serve as a tool for collaborative design 

sessions among multiple developers?
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Research and Development Process

Could you share insights into the development process itself? Was the plugin built from scratch or did it reuse 

components from EM-assist? 

And how did you manage the balance between development and user testing under a tight conference deadline?
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Workflow
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RQ1: How effective are LLMs at suggesting 
opportunities for MM refactoring? 
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80% of LLM’s suggestions are hallucinations
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