
Together We Are Better
LLM, IDE and Semantic Embedding to Assist Move Method Refactoring

Abhiram Bellur University of Colorado Boulder Fraol Batole Tulane University

Malinda Dilhara Amazon Web Services Mohammed Raihan Ullah University of Colorado Boulder

Yaroslav Zharov JetBrains Research Timofey Bryksin JetBrains Research

Kai Ishikawa NEC Corporation Haifeng Chen NEC Laboratories America

Masaharu Morimoto NEC Corporation Shota Motoura NEC Corporation

Takeo Hosomi NEC Corporation Tien N. Nguyen University of Texas at Dallas

Hridesh Rajan Tulane University Nikolaos Tsantalis Concordia University

Danny Dig University of Colorado Boulder, JetBrains Research

https://conf.researchr.org/profile/icsme-2025/abhirambellur
https://conf.researchr.org/profile/icsme-2025/fraolbatole2
https://conf.researchr.org/profile/icsme-2025/malindadilharamalwalaarachchige
https://conf.researchr.org/profile/icsme-2025/mohammedraihanullah1
https://conf.researchr.org/profile/icsme-2025/yaroslavzharov
https://conf.researchr.org/profile/icsme-2025/timofeybryksin
https://conf.researchr.org/profile/icsme-2025/kaiishikawa
https://conf.researchr.org/profile/icsme-2025/haifengchen
https://conf.researchr.org/profile/icsme-2025/masaharumorimoto1
https://conf.researchr.org/profile/icsme-2025/shotamotoura
https://conf.researchr.org/profile/icsme-2025/takeohosomi
https://conf.researchr.org/profile/icsme-2025/tiennguyen
https://conf.researchr.org/profile/icsme-2025/hrideshrajan
https://conf.researchr.org/profile/icsme-2025/nikolaostsantalis

Why MoveMethod Matters

Top-5 most common refactoring

Improves cohesion, reduces coupling

Reduces Technical Debt and removes code smells: God Class, Feature Envy, Duplicate Code

3

MoveMethod Refactoring to the Rescue

Move to Phone class

Semi-automated process

No automatic recommendations

Current Move Method Workflow in IntelliJ

JetBrains’ IntelliJ IDEA has Move Method

capabilities

4

Approaches for MM Recommendations

5

Static analysis (JMove, JDeodorant)
- thresholds, slow (hours), poor scalability

ML (RMove, PathMove) / DL (FeTruth, Hmove)
- need retraining, overwhelm users

? Optimize software quality metrics

Do not align with how developers refactor code

LLMs

- prolific, capture semantic intuition

Key Challenges

LLM Hallucinations - 80% invalid recommendations

Context window limits – can’t reason over large projects

Workflow fit – needs to be fast and IDE-integrated

6

Our Insights

Combine LLM creativity + IDE rigor

Filter hallucination via static preconditions checks in IDE

Semantic embeddings + Refactoring-aware RAG

Few high-quality recommendations (≤3 per class)

MM-Assist: Workflow

8

Empirical Evaluation Setup

Two Datasets:

- Synthetic corpus of 235 MM scenarios

- New real-world corpus 210 MM (2024+, OSS), avoids LLM training contamination

Formative study

Baselines: JMove, FeTruth, HMove, Vanilla LLM

User study: 30 participants, 1 week, own project

9

Results: Synthetic Corpus

10

235 MM scenarios

Metric: Recall@K for top-K recommendations

MM-ASSIST Recall@1 = 67%, Recall@3 = 75%

Baselines: JMOVE ~40%, HMOVE ~26%, FETRUTH only 2–3%

1.7x improvement over best baseline

LLM alone performed better than old tools but still plagued by hallucinations

Results: Real-World Corpus + User study

Replicated 210 OSS refactorings (uncontaminated by LLM training)

MM-ASSIST Recall@3 = 80% vs 33% (baselines) → 2.4x improvement.

Runtime: ~30 seconds vs hours or days for baselines.

User study: 30 devs, 350 classes analyzed → 83% positive ratings, avg. 7 accepted refactorings/user.

Dev quote: “Skeptical about AI, but glad to delegate grunt work.”

11

Executive Summary

First end-to-end LLM-powered Move Method assistant

Key Idea: LLMs (creative)+ IDEs (validation) + Refactoring-Aware RAG (lookup)

- addresses hallucinations + context limits via IDE + RAG

2–4× better recall, 10–100× faster

Trusted by developers (83% positive)

Techniques generalize to other refactorings

12

Bonus Slides

13

Move Method Refactoring in IntelliJ

14

Demo MM-Assist

15

Lessons Learned

LLM Critique –

Can be too harsh
High hallucination rate 80%

Task Decomposition helped – instead of
depending on LLM to do everything

Data leakage problem

16

LLM Data Leakage
● Gpt-4o training data cutoff: Oct-2023

• MM in 2015.

• Instance MM in 2024

• Static MM in 2024
17

Your Questions: Core Methodology and RAG
Pipeline

Regarding the core methodology, can semantic retrieval meaningfully identify better refactoring targets than

traditional dependency graph analysis?

What are the specifics of the RAG pipeline—including the choice of VoyageAI models, the number of retrieved

classes, and the prompt optimization strategy, and does using partial class summaries for retrieval significantly

degrade recommendation quality?

How effective is cosine similarity for code, and what is the justification for weighting package proximity 2x higher

than the utility metric in the RankingScore formula?

18

Tool Design, Usability, and Edge Cases

From a usability standpoint, how does the tool handle edge cases like finding no suitable candidates (does it fail

gracefully or hallucinate?)

What is the workflow for complex "God Classes"?

What was the rationale for limiting suggestions to three candidates, and does this hinder the full exploration of

refactoring options without repeated use?

19

Evaluation, Performance, and Generalizability

In terms of the evaluation, are the reported performance gains primarily due to the novel algorithm, or could they be

attributed to failures or limitations in the baseline tools used for comparison?

What were the main reasons developers rejected 17.2% of suggestions?

How does the tool's performance scale to massive codebases?

How would it translate to dynamic languages like Python?

What is the expected gain from using a domain-tuned embedding model?

20

Cost, Practicality, and Real-World Adoption

Considering practical adoption, what is the tool's financial viability, and how would its performance and cost change

if using an open-source LLM instead of a commercial API?

What are the long-term integration complexities and developer privacy concerns?

Crucially, what are the potential implications of the LLM introducing "design hallucinations," especially when

applying such a tool to safety-critical codebases?

21

Future Work and Potential Improvements

For future work, beyond improving method-level suggestions by integrating static metrics or creating a personalized

memory system, can this architecture be extended to support more complex tasks?

For instance, could it facilitate large-scale architectural refactorings or even serve as a tool for collaborative design

sessions among multiple developers?

22

Research and Development Process

Could you share insights into the development process itself? Was the plugin built from scratch or did it reuse

components from EM-assist?

And how did you manage the balance between development and user testing under a tight conference deadline?

23

Workflow

24

RQ1: How effective are LLMs at suggesting
opportunities for MM refactoring?

25

80% of LLM’s suggestions are hallucinations

	Slide 1: Together We Are Better LLM, IDE and Semantic Embedding to Assist Move Method Refactoring
	Slide 2: Why MoveMethod Matters
	Slide 3: MoveMethod Refactoring to the Rescue
	Slide 4: Current Move Method Workflow in IntelliJ
	Slide 5: Approaches for MM Recommendations
	Slide 6: Key Challenges
	Slide 7: Our Insights
	Slide 8: MM-Assist: Workflow
	Slide 9: Empirical Evaluation Setup
	Slide 10: Results: Synthetic Corpus
	Slide 11: Results: Real-World Corpus + User study
	Slide 12: Executive Summary
	Slide 13: Bonus Slides
	Slide 14: Move Method Refactoring in IntelliJ
	Slide 15: Demo MM-Assist
	Slide 16: Lessons Learned
	Slide 17: LLM Data Leakage
	Slide 18: Your Questions: Core Methodology and RAG Pipeline
	Slide 19: Tool Design, Usability, and Edge Cases
	Slide 20: Evaluation, Performance, and Generalizability
	Slide 21: Cost, Practicality, and Real-World Adoption
	Slide 22: Future Work and Potential Improvements
	Slide 23: Research and Development Process
	Slide 24: Workflow
	Slide 25: RQ1: How effective are LLMs at suggesting opportunities for MM refactoring?

