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Long Methods In Codebases
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Extract Method Refactoring

1. Original Method

2. Extracted Method

3. Call Site
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Semi-automated process

No automatic recommendations

Current Extract Method Workflow in IntelliJ

JetBrains’ IntelliJ IDEA has extract 
method capabilities
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Extract Method Research

Many research tools for recommending fragments to extract
- JDeodorant
- JExtract
- LiveREF
- REMS
- GEMS
- SEMI
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? Optimize software quality metrics

Generate refactorings that do not align with developers’ preferences



Motivating Example from Open-Source Project (Neo4j)

Intuition: LLM Suggestions – align with developer preferences
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OSS Developer

Wow – LLM!

LLM Hallucination 
- Invalid

LLM Hallucination 
– Not Useful

Other Tools

a05a8c5



Our solution: LLM + IDE Static Analysis 

● Leverage creative capabilities of LLMs

● Use static analysis techniques to filter, further enhance, an rank 
LLM-provided suggestions

● Utilize the full power of a state-of-the-practice commercial IDE, 
IntelliJ IDEA, to apply refactorings safely

● IntelliJ IDEA plugin implementation – EM-Assist
7

+



8

LLM (GPT 3.5)

method to refactor 

select

Prompt: 
Extract Method 
suggestions?

Extract method 
suggestions

Valid, Useful and 
Enhanced Extract 
method suggestions

Is Useful?

  Enhancer

Rank suggestions

Is valid?

Select a 
suggestion

apply
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IntelliJ
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EM-Assist Workflow



Empirical Evaluation
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Datasets: 
• Synthetic Corpus of 122 scenarios
• Mined 1752 real-world Extract-Method 
refactorings from OSS

RQ1: How 
effective is 
Vanilla LLM?

RQ2: What LLM 
hyper-
parameters work 
best?

RQ3: How 
effective is EM-
Assist?

RQ4: How 
useful is EM-
Assist?



RQ1: How effective is Vanilla LLM?

Asked an LLM to replicate an oracle of refactoring situations

LLMs are creative and prolific: averaging 27 suggestions 
per method

Hallucination Invalid - 44.4% of the suggestions are 
invalid, resulting in non-compiling code, or semantically not 
equivalent

Hallucination Not Useful - 14.8% of suggestions are not 
useful (e.g. one liners, or entire method body)
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RQ3: How effective is EM-Assist

Oracle of actual 1752 extract method refactorings from OSS
● EM-Assist achieved 53.4% recall rate
● Compared to 39.4% recall rate by JExtract (best in class using static analysis)

EM-Assist better aligns with how expert developers performed refactorings in the 
wild.
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RQ4: How useful is EM-Assist?
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Fire-house survey – New commits

16 expert developers participated in the survey, with 
81.3% giving a positive rating
“It looks super cool so far! :fire:”
“Thank you for interesting suggestions! Hope to see 
this in production in the future.”
“These suggestions made me look at this code with 
new eyes, and I will try to refactor it”



Executive Summary

● LLM’s create a wow effects, 
but also have a high hallucination rate – 59.2%

● Tame Hallucinations
● Tame the non-determinism
● EM-Assist outperforms previous state-of-the-art and 

aligns with how expert developers perform 
refactoring.

IDE + LLM  + Human >> Sum of the individual parts

Ongoing work: Moving beyond one refactoring at a time 
⇒ Refactoring Plan executed by an Agent 
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Tool, Datasets



14

Demo



Your questions: Suggestion Quality, Ranking, and 
Human Factors

How does the system reconcile objective software engineering best practices 
with subjective developer preferences, particularly when its definition of 
"usefulness" risks reinforcing existing patterns at the expense of novel solutions? 

Does the ranking mechanism inherently down-rank rare but superior refactorings, 
and have alternative presentations—like grouping by intent or removing ranks 
entirely—been explored to counter this bias and better empower developers?
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Ensuring Correctness and Handling Hallucinations

● Beyond the limits of static analysis, how does the system guarantee that a 
refactoring suggestion is semantically equivalent and preserves control flow, 
thereby catching subtle hallucinations? 

● How does it differentiate these errors from intentional, beneficial logic 
changes a developer might want, and what are the performance and 
feasibility trade-offs of integrating a deeper analysis tool, such as a language 
server, into the validation pipeline?
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LLM Behavior, Prompting, and Configuration

● What explains the counterintuitive result of GPT-3.5 outperforming GPT-4 for this 
task, and how sensitive is the system to future model updates? 

● In controlling the output, what are the trade-offs between constraining the model 
via prompt engineering versus applying post-processing filters? 

● How is the model's non-determinism managed, and could it be leveraged as a 
feature—using higher temperatures to generate more diverse, semantically 
equivalent suggestions for the developer to choose from?
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Scalability, Generalization, and Long-Term Impact

● How does this tool's performance scale to massive enterprise codebases with 
significant legacy code?

● What is its measurable long-term impact on code maintainability and potential 
runtime performance?

● What strategies can make the associated LLM costs economically viable for 
smaller businesses?
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System Architecture and Adaptation

● From an architectural standpoint, how does the IDE integration manage 
asynchronous calls to maintain UI responsiveness, and could different IDE 
versions improve performance? 

● Can the system adapt beyond one-shot suggestions to learn and enforce 
project-specific coding conventions by retaining context over time? 

● How do its heuristics, such as the 88% filter, balance the goal of eliminating 
trivial suggestions against the risk of accidentally discarding valid, large-scale 
refactorings?
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Unprecedented Code Change Automation: 
The Fusion of LLMs and Transformation by 

Example

Malinda Dilhara Danny DigAbhiram Bellur Timofey Bryksin



Motivation

Developers repeat code changes

• Adoption of shared coding idioms
• Adherence to common best practices
• Tackle similar programming challenges 

• Fixing bugs, API updates, Language upgrades

Repeated changes happen because:
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Code change pattern (CPAT)

number = 0
for x in int_list:
  number = number + x

number = numpy.sum(int_list)
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Commit c8b28432 in GitHub project NifTK/NiftyNet



Overview of Transformation by Example (TBE)

Infer transformation rules, 
apply transformations 
[ICSE’23]

Example changes

Improved Project

Mine examples [ICSE’22]
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There are many other Transformation by 
Example(TBE) systems

PyEvolve (ICSE-2023)

PyEvolve is a TBE system

TCInfer – Ketkar et al. (ICSE-2022) 
collaboration ML4SE @ JetBrains Research 

→

APIFix - Gao et al. (OOPSLA - 2021) 

new SqlScriptExecutor(𝑋1,𝑋2,𝑋3)
new SqlScriptExecutor(𝑋1,𝑋2,𝑋3, () => Substitute.For<IJournal>()) 

- new SqlScriptExecutor("foo",() => true , null) 
+ new SqlScriptExecutor("foo",() => true, null, () => Substitute.For<IJournal>()) 

→

Code example

Transformation Rule
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Different syntactic variants are challenging

number = 0
for x in int_list:
  number= number + x

number= np.sum(int_list)

count = 0
for i in range(len(int_list)):
 count += int_list[i]
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Different syntactic variants are challenging

count = 0
for i in range(len(int_list)):
    count += int_list

count = 0
¡= 0
while i < len (int_list): 

count += int_list[i] 
i++

result = 0
for i in range(len(int_list)):
 result = result + int_list[i]

result = 0
for index, value in enumerate (int_list):
 result += value

result = 0
for index, value in enumerate(int list):
 result = result + value
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Key Idea

• LLMs’ training data comprises of various ways that developers write the 
same piece of code.

• Use LLMs to generate different variations of the input code

LLMInput CPAT CPAT Variants
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Infer transformation rules, 
apply transformations



LLMs Hallucinate
count = 0
for i in range(len(int_list)):

count += 5

count = 0
for i in sorted(int_list):

count += i

count = sum(int_list)

Incorrect

Unrealistic

Not applicable 
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number = 0
for x in intArray:
  number= number + x

number= np.sum(intArray)

Original CPAT



LLM + Static Code Analysis + 
Dynamic Code Analysis
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Selecting correct Variants

• Generate Test Cases
• Execute Test Cases Select Variants Semantically Equivalent to the CPAT

LLMCPAT

Test cases 

Variants

Execute Test Cases

Valid Test 
Cases

Validate Test Cases 
and Execute them 
against original CPAT

Correct 
variants

count = 0
for i in range(len(int_list)):

count += 5
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Selecting Realistic Variants

Detecting all the unrealistic variants is hard

The goal is to reduce as many unrealistic variants as possible.

Fine-tune the randomness to generate fewer unrealistic variants

count = 0
for i in sorted(int_list):

count += int_list[i]
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Selecting Applicable Variants

Use static analysis-based rules to remove not applicable variants 

1) Number of control nodes (e.g., For loops) are equal in both original CPAT 
and Variant?

2) Does the variants contain any new declarations (e.g., method declarations)

count = sum(int_list)
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Harnessing full power of LLMs
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LLMCPAT Applicable Variants

Fixed-point iteration (If)

Validations based on 
Dynamic/Static code 

analysis

CPAT LLM Test cases

PyCraft!

Prompt iteration (Ip)



Evaluation

RQ1) How effective are LLMs at generating variations?

RQ2) How effective are LLMs at generating test-cases?

RQ3) What are the optimal parameters for generating unseen 
variants?

RQ4) What are the optimal parameters for generating test 
cases?

RQ5) How effective is PyCraft at finding new opportunities and 
performing transformations over the previous state-of-the-art?

RQ6) How useful are the generated program transformations?
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RQ1). How effective are LLMs at generating variations?

LLM
20 code 
change 
patterns 

Variants

LLMs excel in generating unseen variants (584 per CPAT) but also 
produce errors (65%). 
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RQ5). How effective is PyCraft at finding new opportunities and 
performing transformations over the baseline?
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20 Code change 
patterns

PyEvolve PyCraft

200 GitHub Projects

X code transformations 14X code transformations



RQ6). How useful are the generated program transformations?

10 Code change 
patterns

86 Code change 
instances 

generated by 
variants

PyCraft generated 86 code patches, of which developers accepted 72 (83%)

Project: Ann-benchmarks

PyTorch

20 highly rated ML projects

Keras

PyCraft
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“Well done, your changes are 
cleaner and either faster or 

equivalently faster”

“The changes look good, I am not sure 
why we didn’t write it that way before”
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Summary

19How can you use our tool to your own research?

• PyCraft is a novel transformation-by-example system that 
is 14x better than previous state-of-the-art.

• Harness LLM power, to generate previously unseen 
variants (58 per CPAT)

• Develop novel techniques to filter the high rate of LLM 
hallucinations

• Discovered best-practices to get the most 
performance out of LLM

• Submitted 86 patches to 20 open-source projects, of 
which developers accepted 72 (83%)

Dataset and Tool



Generalizability, Robustness, and Future-
Proofing
• How does PyCraft ensure long-term robustness and adaptability?

• How can it remain effective as underlying LLMs evolve, and can its 
hyperparameters be auto-tuned for new models?

•  How would its validation process adapt to languages with complex constraints 
like Rust's borrow checker? 

• How stable are the inferred rules across runs? 

• How critical are "unseen" variants to keeping pace with software evolution?
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Integration into Developer Workflow & 
Real-World Application
• How does PyCraft integrate into a real-world developer workflow, 

combining refactoring with new feature development?

• How does it make context-aware decisions (e.g., CPU vs. GPU targets), 
support legacy system modernization? 

• How does it embody a nuanced refactoring philosophy that 
distinguishes between code needing abstraction and code that is 
intentionally verbose for clarity?
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Evaluation, Metrics, and Limitations

• Beyond immediate usefulness, how can the long-term impact on code 
maintainability be measured? 

• What is the system's false negative rate for good edits? 

• What are the primary limitations where the rule-mining breaks, such as 
with multi-location or non-behavior-preserving changes? 

• Crucially, how much of the performance uplift is attributable specifically to 
the LLM's generative diversity versus the underlying search and abstraction 
framework?
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Security Considerations

What security considerations govern the use of "unseen" LLM-
generated variants for creating automated transformation rules? 

What specific safeguards are in place to prevent the introduction of 
vulnerabilities or subtle bugs through these novel, unvetted code 
patterns?
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Core Mechanism & Implementation 

• What is PyCraft's operational pipeline? 

• What complexity of Code Patterns and Transformations (CPATs)—from 
one-liners to larger blocks—can it handle?

• How are its prompts programmatically architected from examples? 

• What search mechanism efficiently finds all CPAT instances in large 
codebases, and how does pattern complexity impact that search?
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The Role and Application of LLMs

• What is the precise relationship between the few-shot learning, in-
context learning, and prompt engineering methodologies used? 

• What specific prompts enable the LLM to perform auxiliary tasks like 
type inference and test generation?

• Furthermore, how generalizable are the chosen hyperparameters 
(e.g., Temperature) across different domains, and what methods 
beyond tuning are used to mitigate hallucinations?
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Managing and Validating Generated Code 
Variants
• How does PyCraft manage the variant lifecycle to ensure quality and 

sufficiency? How does it prevent duplicate variants and verify new ones are 
meaningfully distinct? 

• Is there an automated process for filtering "non-useful” variants? 

• To overcome manual validation, how can the "usefulness" judgment be 
scaled or automated, perhaps via LLMs or by mining code review signals?

• Given diminishing returns, how does the system determine when to stop 
generating variants?
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Scalability, Cost, and Performance

• How do PyCraft's performance and cost—including computation, 
latency, and finances—scale with codebase size and CPAT complexity?

• What are the practical upper and lower bounds for a codebase where 
the tool is effective? 

• How does its latency compare to traditional refactoring tools? 

• Is the overall re-prompting approach economically viable for large-
scale enterprise use?
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