
Next-Generation Refactoring: Combining
LLM Insights and IDE Capabilities for

Extract Method

Timofey
Bryksin

Danny
Dig

Dorin
Pomian

Abhiram
Bellur

Malinda
Dilhara

Zarina
Kurbatova

Egor
Bogomolov

Andrey
Sokolov

Long Methods In Codebases

2

Extract Method Refactoring

1. Original Method

2. Extracted Method

3. Call Site

3

Semi-automated process

No automatic recommendations

Current Extract Method Workflow in IntelliJ

JetBrains’ IntelliJ IDEA has extract
method capabilities

4

Extract Method Research

Many research tools for recommending fragments to extract
- JDeodorant
- JExtract
- LiveREF
- REMS
- GEMS
- SEMI

5

? Optimize software quality metrics

Generate refactorings that do not align with developers’ preferences

Motivating Example from Open-Source Project (Neo4j)

Intuition: LLM Suggestions – align with developer preferences

6

OSS Developer

Wow – LLM!

LLM Hallucination
- Invalid

LLM Hallucination
– Not Useful

Other Tools

a05a8c5

Our solution: LLM + IDE Static Analysis

● Leverage creative capabilities of LLMs

● Use static analysis techniques to filter, further enhance, an rank
LLM-provided suggestions

● Utilize the full power of a state-of-the-practice commercial IDE,
IntelliJ IDEA, to apply refactorings safely

● IntelliJ IDEA plugin implementation – EM-Assist
7

+

8

LLM (GPT 3.5)

method to refactor

select

Prompt:
Extract Method
suggestions?

Extract method
suggestions

Valid, Useful and
Enhanced Extract
method suggestions

Is Useful?

 Enhancer

Rank suggestions

Is valid?

Select a
suggestion

apply

3

1

2

5

8

4

7
9

6

IntelliJ
IDEA

EM-Assist Workflow

Empirical Evaluation

9

Datasets:
• Synthetic Corpus of 122 scenarios
• Mined 1752 real-world Extract-Method
refactorings from OSS

RQ1: How
effective is
Vanilla LLM?

RQ2: What LLM
hyper-
parameters work
best?

RQ3: How
effective is EM-
Assist?

RQ4: How
useful is EM-
Assist?

RQ1: How effective is Vanilla LLM?

Asked an LLM to replicate an oracle of refactoring situations

LLMs are creative and prolific: averaging 27 suggestions
per method

Hallucination Invalid - 44.4% of the suggestions are
invalid, resulting in non-compiling code, or semantically not
equivalent

Hallucination Not Useful - 14.8% of suggestions are not
useful (e.g. one liners, or entire method body)

10

RQ3: How effective is EM-Assist

Oracle of actual 1752 extract method refactorings from OSS
● EM-Assist achieved 53.4% recall rate
● Compared to 39.4% recall rate by JExtract (best in class using static analysis)

EM-Assist better aligns with how expert developers performed refactorings in the
wild.

11

RQ4: How useful is EM-Assist?

12

Fire-house survey – New commits

16 expert developers participated in the survey, with
81.3% giving a positive rating
“It looks super cool so far! :fire:”
“Thank you for interesting suggestions! Hope to see
this in production in the future.”
“These suggestions made me look at this code with
new eyes, and I will try to refactor it”

Executive Summary

● LLM’s create a wow effects,
but also have a high hallucination rate – 59.2%

● Tame Hallucinations
● Tame the non-determinism
● EM-Assist outperforms previous state-of-the-art and

aligns with how expert developers perform
refactoring.

IDE + LLM + Human >> Sum of the individual parts

Ongoing work: Moving beyond one refactoring at a time
⇒ Refactoring Plan executed by an Agent

13

Tool, Datasets

14

Demo

Your questions: Suggestion Quality, Ranking, and
Human Factors

How does the system reconcile objective software engineering best practices
with subjective developer preferences, particularly when its definition of
"usefulness" risks reinforcing existing patterns at the expense of novel solutions?

Does the ranking mechanism inherently down-rank rare but superior refactorings,
and have alternative presentations—like grouping by intent or removing ranks
entirely—been explored to counter this bias and better empower developers?

15

Ensuring Correctness and Handling Hallucinations

● Beyond the limits of static analysis, how does the system guarantee that a
refactoring suggestion is semantically equivalent and preserves control flow,
thereby catching subtle hallucinations?

● How does it differentiate these errors from intentional, beneficial logic
changes a developer might want, and what are the performance and
feasibility trade-offs of integrating a deeper analysis tool, such as a language
server, into the validation pipeline?

16

LLM Behavior, Prompting, and Configuration

● What explains the counterintuitive result of GPT-3.5 outperforming GPT-4 for this
task, and how sensitive is the system to future model updates?

● In controlling the output, what are the trade-offs between constraining the model
via prompt engineering versus applying post-processing filters?

● How is the model's non-determinism managed, and could it be leveraged as a
feature—using higher temperatures to generate more diverse, semantically
equivalent suggestions for the developer to choose from?

17

Scalability, Generalization, and Long-Term Impact

● How does this tool's performance scale to massive enterprise codebases with
significant legacy code?

● What is its measurable long-term impact on code maintainability and potential
runtime performance?

● What strategies can make the associated LLM costs economically viable for
smaller businesses?

18

System Architecture and Adaptation

● From an architectural standpoint, how does the IDE integration manage
asynchronous calls to maintain UI responsiveness, and could different IDE
versions improve performance?

● Can the system adapt beyond one-shot suggestions to learn and enforce
project-specific coding conventions by retaining context over time?

● How do its heuristics, such as the 88% filter, balance the goal of eliminating
trivial suggestions against the risk of accidentally discarding valid, large-scale
refactorings?

19

Unprecedented Code Change Automation:
The Fusion of LLMs and Transformation by

Example

Malinda Dilhara Danny DigAbhiram Bellur Timofey Bryksin

Motivation

Developers repeat code changes

• Adoption of shared coding idioms
• Adherence to common best practices
• Tackle similar programming challenges

• Fixing bugs, API updates, Language upgrades

Repeated changes happen because:

2

Code change pattern (CPAT)

number = 0
for x in int_list:
 number = number + x

number = numpy.sum(int_list)

3

Commit c8b28432 in GitHub project NifTK/NiftyNet

Overview of Transformation by Example (TBE)

Infer transformation rules,
apply transformations
[ICSE’23]

Example changes

Improved Project

Mine examples [ICSE’22]

4

There are many other Transformation by
Example(TBE) systems

PyEvolve (ICSE-2023)

PyEvolve is a TBE system

TCInfer – Ketkar et al. (ICSE-2022)
collaboration ML4SE @ JetBrains Research

→

APIFix - Gao et al. (OOPSLA - 2021)

new SqlScriptExecutor(𝑋1,𝑋2,𝑋3)
new SqlScriptExecutor(𝑋1,𝑋2,𝑋3, () => Substitute.For<IJournal>())

- new SqlScriptExecutor("foo",() => true , null)
+ new SqlScriptExecutor("foo",() => true, null, () => Substitute.For<IJournal>())

→

Code example

Transformation Rule

5

Different syntactic variants are challenging

number = 0
for x in int_list:
 number= number + x

number= np.sum(int_list)

count = 0
for i in range(len(int_list)):
 count += int_list[i]

6

Different syntactic variants are challenging

count = 0
for i in range(len(int_list)):
 count += int_list

count = 0
¡= 0
while i < len (int_list):

count += int_list[i]
i++

result = 0
for i in range(len(int_list)):
 result = result + int_list[i]

result = 0
for index, value in enumerate (int_list):
 result += value

result = 0
for index, value in enumerate(int list):
 result = result + value

7

Key Idea

• LLMs’ training data comprises of various ways that developers write the
same piece of code.

• Use LLMs to generate different variations of the input code

LLMInput CPAT CPAT Variants

8

Infer transformation rules,
apply transformations

LLMs Hallucinate
count = 0
for i in range(len(int_list)):

count += 5

count = 0
for i in sorted(int_list):

count += i

count = sum(int_list)

Incorrect

Unrealistic

Not applicable

9

number = 0
for x in intArray:
 number= number + x

number= np.sum(intArray)

Original CPAT

LLM + Static Code Analysis +
Dynamic Code Analysis

10

Selecting correct Variants

• Generate Test Cases
• Execute Test Cases Select Variants Semantically Equivalent to the CPAT

LLMCPAT

Test cases

Variants

Execute Test Cases

Valid Test
Cases

Validate Test Cases
and Execute them
against original CPAT

Correct
variants

count = 0
for i in range(len(int_list)):

count += 5

11

Selecting Realistic Variants

Detecting all the unrealistic variants is hard

The goal is to reduce as many unrealistic variants as possible.

Fine-tune the randomness to generate fewer unrealistic variants

count = 0
for i in sorted(int_list):

count += int_list[i]

12

Selecting Applicable Variants

Use static analysis-based rules to remove not applicable variants

1) Number of control nodes (e.g., For loops) are equal in both original CPAT
and Variant?

2) Does the variants contain any new declarations (e.g., method declarations)

count = sum(int_list)

13

Harnessing full power of LLMs

14

LLMCPAT Applicable Variants

Fixed-point iteration (If)

Validations based on
Dynamic/Static code

analysis

CPAT LLM Test cases

PyCraft!

Prompt iteration (Ip)

Evaluation

RQ1) How effective are LLMs at generating variations?

RQ2) How effective are LLMs at generating test-cases?

RQ3) What are the optimal parameters for generating unseen
variants?

RQ4) What are the optimal parameters for generating test
cases?

RQ5) How effective is PyCraft at finding new opportunities and
performing transformations over the previous state-of-the-art?

RQ6) How useful are the generated program transformations?

15

RQ1). How effective are LLMs at generating variations?

LLM
20 code
change
patterns

Variants

LLMs excel in generating unseen variants (584 per CPAT) but also
produce errors (65%).

16

RQ5). How effective is PyCraft at finding new opportunities and
performing transformations over the baseline?

17

20 Code change
patterns

PyEvolve PyCraft

200 GitHub Projects

X code transformations 14X code transformations

RQ6). How useful are the generated program transformations?

10 Code change
patterns

86 Code change
instances

generated by
variants

PyCraft generated 86 code patches, of which developers accepted 72 (83%)

Project: Ann-benchmarks

PyTorch

20 highly rated ML projects

Keras

PyCraft

18

“Well done, your changes are
cleaner and either faster or

equivalently faster”

“The changes look good, I am not sure
why we didn’t write it that way before”

19

Summary

19How can you use our tool to your own research?

• PyCraft is a novel transformation-by-example system that
is 14x better than previous state-of-the-art.

• Harness LLM power, to generate previously unseen
variants (58 per CPAT)

• Develop novel techniques to filter the high rate of LLM
hallucinations

• Discovered best-practices to get the most
performance out of LLM

• Submitted 86 patches to 20 open-source projects, of
which developers accepted 72 (83%)

Dataset and Tool

Generalizability, Robustness, and Future-
Proofing
• How does PyCraft ensure long-term robustness and adaptability?

• How can it remain effective as underlying LLMs evolve, and can its
hyperparameters be auto-tuned for new models?

• How would its validation process adapt to languages with complex constraints
like Rust's borrow checker?

• How stable are the inferred rules across runs?

• How critical are "unseen" variants to keeping pace with software evolution?

20

Integration into Developer Workflow &
Real-World Application
• How does PyCraft integrate into a real-world developer workflow,

combining refactoring with new feature development?

• How does it make context-aware decisions (e.g., CPU vs. GPU targets),
support legacy system modernization?

• How does it embody a nuanced refactoring philosophy that
distinguishes between code needing abstraction and code that is
intentionally verbose for clarity?

21

Evaluation, Metrics, and Limitations

• Beyond immediate usefulness, how can the long-term impact on code
maintainability be measured?

• What is the system's false negative rate for good edits?

• What are the primary limitations where the rule-mining breaks, such as
with multi-location or non-behavior-preserving changes?

• Crucially, how much of the performance uplift is attributable specifically to
the LLM's generative diversity versus the underlying search and abstraction
framework?

22

Security Considerations

What security considerations govern the use of "unseen" LLM-
generated variants for creating automated transformation rules?

What specific safeguards are in place to prevent the introduction of
vulnerabilities or subtle bugs through these novel, unvetted code
patterns?

23

Core Mechanism & Implementation

• What is PyCraft's operational pipeline?

• What complexity of Code Patterns and Transformations (CPATs)—from
one-liners to larger blocks—can it handle?

• How are its prompts programmatically architected from examples?

• What search mechanism efficiently finds all CPAT instances in large
codebases, and how does pattern complexity impact that search?

24

The Role and Application of LLMs

• What is the precise relationship between the few-shot learning, in-
context learning, and prompt engineering methodologies used?

• What specific prompts enable the LLM to perform auxiliary tasks like
type inference and test generation?

• Furthermore, how generalizable are the chosen hyperparameters
(e.g., Temperature) across different domains, and what methods
beyond tuning are used to mitigate hallucinations?

25

Managing and Validating Generated Code
Variants
• How does PyCraft manage the variant lifecycle to ensure quality and

sufficiency? How does it prevent duplicate variants and verify new ones are
meaningfully distinct?

• Is there an automated process for filtering "non-useful” variants?

• To overcome manual validation, how can the "usefulness" judgment be
scaled or automated, perhaps via LLMs or by mining code review signals?

• Given diminishing returns, how does the system determine when to stop
generating variants?

26

Scalability, Cost, and Performance

• How do PyCraft's performance and cost—including computation,
latency, and finances—scale with codebase size and CPAT complexity?

• What are the practical upper and lower bounds for a codebase where
the tool is effective?

• How does its latency compare to traditional refactoring tools?

• Is the overall re-prompting approach economically viable for large-
scale enterprise use?

27

	Slide 1: Next-Generation Refactoring: Combining LLM Insights and IDE Capabilities for Extract Method
	Slide 2: Long Methods In Codebases
	Slide 3: Extract Method Refactoring
	Slide 4: Current Extract Method Workflow in IntelliJ
	Slide 5: Extract Method Research
	Slide 6: Motivating Example from Open-Source Project (Neo4j)
	Slide 7: Our solution: LLM + IDE Static Analysis
	Slide 8: EM-Assist Workflow
	Slide 9: Empirical Evaluation
	Slide 10: RQ1: How effective is Vanilla LLM?
	Slide 11: RQ3: How effective is EM-Assist
	Slide 12: RQ4: How useful is EM-Assist?
	Slide 13: Executive Summary
	Slide 14
	Slide 15: Your questions: Suggestion Quality, Ranking, and Human Factors
	Slide 16: Ensuring Correctness and Handling Hallucinations
	Slide 17: LLM Behavior, Prompting, and Configuration
	Slide 18: Scalability, Generalization, and Long-Term Impact
	Slide 19: System Architecture and Adaptation
	Slide 20: RQ2: What LLM hyper-parameters work best?
	Slide 21

