
Can LLMs Update API Documentation?
*API Documentation Updates By Augmenting LLMs with Code Changes

Seonah Lee
Software Engineering

Gyeongsang National University
Jinju, Republic of Korea

saleese@gnu.ac.kr

Jueun Heo
AI Convergence Engineering

Gyeongsang National University
Jinju, Republic of Korea

juandeun@gnu.ac.kr

Katherine R. Dearstyne
Computer Science and Engineering

University of Notre Dame
Notre Dame, IN, USA

kdearsty@nd.edu

Abstract—Human-written API documentation often becomes
outdated, requiring developers to update it manually. Researchers
have proposed identifying outdated API references in documen-
tation, yet have not addressed updating API documentation. Now,
emerging large language models (LLMs) are capable of gener-
ating code examples and text descriptions. Then, a key question
arises: Can LLMs assist in updating API documentation? In
this paper, we propose an approach for leveraging an LLM
to update API documentation with code change information.
To evaluate this approach, we select five open-source projects
that manage documentation revisions on GitHub and analyze
the differences in documentation between two releases to derive
ground truths. We then assess the accuracy of LLM-generated
updates by comparing them to the ground truths. Our results
show that LLM-generated updates achieve higher METEOR than
outdated API documentation (0.771 vs 0.679). It indicates that
the LLM updates are more similar to the human updates than
the outdated documentation. Our results also reveal that LLMs
update code-related information in API documentation with a
maximum F1 score of 0.921.

Index Terms—API documentation, updates, LLMs, code
changes, code summarization

I. INTRODUCTION

API documentation serves as the definitive resource that
developers rely on to understand, adopt, and effectively use
APIs [1], [2]. To support their development, various tools,
such as JavaDoc [3] and Doxygen [4], have been created to
automatically generate documentation from code comments.
Despite this, API documentation is commonly outdated [5],
with studies showing that up to 82.3% of projects have
experienced outdated documentation at least once during their
history [6], [7]. This is a significant challenge in software doc-
umentation, with research showing that outdated information
accounts for a substantial portion of documentation issues [8].
While this problem is particularly common in human-written
API documentation [2], it remains essential, as it offers users
a more concise and practical way to understand and use an
API compared to automatically generated alternatives.

Given the impact of outdated API documentation, re-
searchers have explored various methods to address this is-
sue [2], [5]–[7], [9]. For instance, Lee et al. proposed automat-
ically detecting outdated API names and suggesting updated
names based on revision histories of source code [2]. Similarly,
Tan et al. used regular expressions to find API names in

documentation and use these matches to identify outdated API
references in documentation [6], [7]. While these approaches
have improved the detection of outdated API documentation,
there has been limited research on methods for updating the
documentation itself.

Emerging large language models (LLMs) offer advanced
capabilities for generating documentation, including code ex-
amples and textual descriptions. Consequently, researchers
have explored using LLMs to enhance API documentation [10]
or leveraging API documentation to improve LLM perfor-
mance [11]. Additionally, studies have investigated the use
of LLMs for automatically generating code comments and
commit messages [12] or for generating documentation from
source code [13]. However, none of these studies have specif-
ically addressed updating human-written API documentation.

To address this gap, we propose updating API documenta-
tion by augmenting LLMs with code changes. This approach
allows developers to rely on accurate documentation through-
out the product lifecycle while reducing the time and effort
required to keep them up-to-date. The proposed approach
consists of three phases. The first phase is to extract API
change rules from code revision histories. The second phase
is to identify outdated API references with the API change
rules. The third phase is to update document snippets with
LLM prompts and API change rules.

We evaluated our approach through both quantitative and
qualitative analyses. First, we compared manual updates across
five projects with those generated by our method. Given a
change rule, GPT-4o and Claude accurately updated API ref-
erences with F1 scores of 0.921 and 0.900, respectively. GPT-
4o and Claude also updated document snippets with METEOR
values of 0.771 and 0.759, respectively. We verified that the
updates made by GPT-4o and Claude are significantly different
from outdated ones. Furthermore, we gathered feedback from
developers on the usefulness of the updated documentation.
Our results indicated that accurate and concrete updates are
crucial for effective reporting.

Our contributions are as follows:
• We propose an approach to update API documentation

by augmenting LLMs with API change rules.
• We demonstrate experimental results that LLMs can gen-

erate API document updates similar to document updates

by humans than outdated API documents.
• We make the benchmark data for outdated API documents

and their ground truth updates available for follow-up
researchers. 1

The remaining parts of the paper are organized as follows.
Section II discusses the related work. Section III introduces
our proposed approach. Section IV explains our experimental
setup. Section V reports our experimental results. Section
VI discusses the qualitative results of our experiments, and
Section VII concludes our paper.

II. RELATED WORK

There are three research groups relevant to our study.
The first group identified outdated API references in API
documentation. The second group associated LLMs with API
documentation. The third group used LLMs for code changes.

A. Studies for outdated API documentation

The first group focused on identifying outdated API ref-
erences. Zong and Su developed DocRef to detect API doc-
umentation errors, including outdated API references. They
compared API references with the latest version of API
names and found mismatches between them [5]. Dagenais
and Robillard developed AdDoc to detect and recommend
updates to documentation based on changes in the code-
base. They recommended new code elements that should be
documented as well as API references to deprecated or deleted
code elements [9]. Lee et al. developed FreshDoc to updated
human-written API documentation. They identified outdated
API names and made suggestions updated API names based
on change rules mined in revision histories of code [2]. Tan et
al. searched outdated API names in release notes and read me
files by using regular expressions for JavaScript, Java, Python
and Go [6]. Tan et al. developed a GitHub Actions tool that
alerts GitHub developers outdated code element references
in read me files and wiki pages whenever a pull request is
submitted [7]. However, they have not yet focused on updating
API documentation by leveraging an LLM.

B. Studies of LLMs for API documentation

The second group used LLMs for API documentation or
used API documentation for LLMs. Yang et al. suggested
APIDocBooster by leveraging GPT-4. The features of API-
DocBooster are 1) obtaining the inputs from StackOverflow
as well as YouTube, and 2) connecting extractive summaries
and abstract summaries in pipelines [10]. Khan and Uddin
proposed generating code documentation by using OpenAI’s
Codex. In prompt they put source code and asked to generate
the code description as sentences [14]. Su et al. explored
the use of LLMs to extract valuable information such as
locking rules, exception predicates, and performance-related
configurations from API documentation [15]. Lazar et al.
proposed SpeCrawler to transfer REST API documentaiotn
into an Open API specification that represents data formats

1https://zenodo.org/records/15022935

for RESTful APIs by using LLMs [16]. Wang et al. proposed
two prompt-fix based approaches for deprecated API usage
in LLM-based code completion. The first one is to replace
deprecated API tokens then regenerate them. The second one
is insert additional replacing prompts then regenerate them.
[17]. Jain et al. created DAC, a database of a bunch of
API documentation to augment LLMs. They discovered that
DAC was useful for the APIs with low frequency but not for
the APIs with high frequency, and revised DAC to DAC++
that does not retrieve the database with the APIs with high
frequency [11]. However, they have not paid attention to
updating API documentation with LLMs.

C. Studies of LLMs for code changes

The third group applied LLMs to code changes. Fan et
al. conducted an empirical study to explore the capabilities
of LLMs on code change related tasks such as generating
code reviews, generating commit messages, and updating
comments just-in-time [12]. Yu et al. proposed a fine-tuned
Large Language Model (LLM) designed to enhance accuracy
and comprehensibility in automated code review. For that,
they collected GitHub review comments and fine-tuned open-
source LLMs (e.g., Llama) with the collected reviews [18].
Imani et al. investigated whether open-source Large Language
Models (OLLMs) can replace proprietary models like GPT-
4 for commit message generation (CMG) and showed that
OLLMs surpasses GPT-4 [19] Zhang et al. proposed gener-
ating commit messages with LLMs and RAG technologies.
Given a diff in a commit, their approach first retrieve the
most similar diff and its commit message and combines the
original diff, the retrieved diff and the commit messaged. Last,
their approach asks LLMs to generate commit message with
the combined inputs [20]. Li et al. also proposed generating
commit messages with LLMs and various other information
around a commit [21]. Zhang et al. proposed using LLMs
to generate parameter constraints from code comments and
applying static program analysis to code with the extracted
parameter constraints [22]. However, they have not addressed
the issues of updating API documentation.

III. PROPOSED APPROACH

We propose an approach to update API documentation by
utilizing an LLM with API change rules. As shown in Figure 1,
the proposed approach consists of three phases. The first phase
extracts API change rules from a code revision history. The
second phase finds outdated API references in API documents
by utilizing the API change rules. The third phase updates API
documents with LLMs, around the outdated API references.

A. Extracting API Change Rules

Phase 1 extracts API change rules from code revision
histories, similar to Step 1 (Extracting Change Rules) of
FreshDoc [2]. The API change rules will be used in identifying
outdated API references in documentation in Step 2 and
retrieving change information in Step 3.

https://zenodo.org/records/15022935

Fig. 1: Overview of the Proposed Approach

The input of the phase is the revision histories of a target
project RH , including the histories of any external libraries
that the target project uses. The phase extracts each revision
rhn from the software revision history and retrieves each
source file fn within that revision. It then compares the
previous and current versions of each source file, fn−1 and
fn, respectively. Based on the comparison, the step derives
change information about an API name c(en−1, en).

The output of the step is a set of API change rules. A rule
can be expressed as a tuple (t, en−1, en), where t represents a
commit id, en−1 an outdated API name, en a new API name.
The change rules are related to modifications, deletions, and
additions of API names.

• Modifications involve changes to either the simple name
or the entire qualified name (i.e., the changes to a package
name). A modification can be expressed as (t, en−1, en),
where both en−1 and en are not null.

• Deletions occur when classes, methods, or fields are
removed from a file. If the file is deleted, it exists in the
previous version but not in the next version. A deletion
can be expressed as (t, en−1,∅), where ∅ is null.

• Additions occur when new classes, methods, or fields are
introduced in a file. If a file is added, it does not exist
in the previous version but exists in the next version. An
additions can be expressed as (t,∅, en).

These API change rules govern the renaming, adding,
and deleting of API names. For example, an API
change rule (2ecb4e, ...MyDataSourcesConfiguration,
...MyAdditionalDataSourceConfiguration) can repre-
sent the renaming of ...MyDataSourcesConfiguration to
...MyAdditionalDataSourceConfiguration.

To implement this phase, we reviewed several tools that
analyze the revision histories [2], [23], [24]. Considering the
time it takes to extract change rules, we chose a less time-
consuming automated method [2].

B. Identifying Outdated API References

Phase 2 leverages the API change rules extracted in Phase
1 to identify outdated API references in the documents. The
main inputs to this phase are the API documents and change
rules. The output are the outdated sections as well as the
change rules matched to those sections. It consists of two steps,
as follows.

1) Splitting API documents into document snippets: This
step splits API documents into API sections and then further
breaks it down into document snippets, if needed. This allows
for creating smaller, more manageable units that are easier to
update.

The input of the step is a set of API documents D, where
each API document di is a file written in a markup language2

First, this step identifies section headings by counting the
number of #’s or =’s and then splits the content of a file by
the section headings. The output of the step are API sections
sj , where an API section is a file that is split from the content
of an API document di. The file name of each API section
is created by appending the original file name to the word
“section” and concatenating the title of each section.

If a section remains quite long, more than 100 lines, simply
splitting the document into multiple sections may not be
sufficient. In such cases, a section can be further split based
on the trace links of the code elements in the API section. For
example, the tag include− code ::3 can be used as a criterion
for splitting an API section. If a section sj includes multiple
tags linking code elements to the API documentation, it can
be split accordingly. The resulting smaller units, which are
extracted from the API document and used in the next step,
are referred to as document snippets dsk.

2) Identifying outdated document snippets: This step iden-
tifies API document snippets that contain outdated API refer-
ences. The inputs are the API snippets and change rules.

2Specifically, we assume a markup file handled by the asciidoctor tool; the
tool helps formatting human-written API documentation.

3The tag is one of the tags used in the Asciidoctor tool.

First, each word in each API snippet dsk is checked against
the simple name of an outdated API name en−1 in the API
change rules. For modification and deletion cases, the step
verifies if all of the terms in the qualified name of en−1 are
present in the API section. If so, it checks if the qualified
names are outdated.

If there are several candidate qualified names, the step
calculates the the sum of distances between the terms in the
qualified name of en−1 and the word that is being examined
in the document snippet. The qualified name with the shortest
distance is selected. The formula that calculates the distance
is described in an earlier paper [2].

Addition cases require a different approach since there is no
outdated API reference to update. In this case, the step first
locates a a source file that is linked to the API names referred
to in the API document di. It then identifies the methods and
the fields that are not documented unlike other methods or
fields in the same source file at the method or field level.
Next, the step determines which method or field that should
be added, and finally, it identifies where the section should be
added according to the order of the methods or fields in the
source file fn.

The final outputs are the outdated sections matched to the
associated API change rules.

C. Updating outdated API Documents

Phase 3 leverages an LLM to update the document snippets
using a given API change rule. To accomplish this, the phase
consists of two steps, as follows.

1) Forming prompts: This step constructs a prompt to
update the API document snippets. The inputs include a
document snippet containing outdated API references and
the matching change rules. Optional inputs may include API
document examples and the relevant source code information,
as is the case for additions.

[API change rule for modification]
In the spring-boot project, the method ...MyDataSourcesConfigura-
tion was modified to ...MyAdditionalDataSourceConfiguration.

[Outdated API document snippet]
Here, the outdated document relevant to the modified code exists:
Configure Two DataSources: ...
include-code::MyDataSourcesConfiguration[] ...

[Instructions]
Can you update the document in asciidoc format?
- Produce only the updated document.
- Maintain the same format as the given document.
- Please do not put the code itself. Keep the original format.
- Keep the same sentences as much as possible if the outdated
document exists.

Different prompts are constructed for modification and
deletion versus addition cases. For modifications and deletions,
outdated API document snippet dsk and the corresponding
API change rule (t, en−1, en) are used as input. As shown in
the example above, the prompt consists of three parts: an API
change rule related to the update, an API document snippet

that needs to be updated, and instructions for updating the
document snippet.

In the case of additions, since there is no outdated, original
API document snippet, an API document example is provided.
Code information is also included, because the addition case
involves creating a new API document snippet for the added
code. This helps the LLM understand the documentation style
of a project.

As shown below, the prompt consists of four parts: an API
change rule related to the update, code information relevant
to the addition, an exampled API document snippet, and
instructions for generating the document snippet. The prompt
includes the code information corresponding to the API change
rule at the method or field level. It also includes the examples
of API document snippets, typically the first document snippet
dsk that belongs to the same document di.

[API change rule for addition]
In the elasticsearch-java project, the method co.elastic.clients.
documentation.usage.IndexingBulkTest.useBulkIndexer() was added.

[Code information]
The following is the test code:

@Test
public void useBulkIndexer() throws Exception
{ ...

//tag::bulk-ingester-setup
BulkIngester<Void> ingester = BulkIngester.of(b

-> b
.client\(esClient\) ...
.maxOperations(100) ...
.flushInterval(1, TimeUnit.SECONDS) ...

); ...
ingester.close(); ...
//end::bulk-ingester-setup

}

[Exampled document snippet]
Here, the exampled document exists: ...
==== Indexing application objects ...
[“source”,“java”] ...
include-tagged::{doc-tests-src}/usage/IndexingBulkTest.java [bulk-
objects] ...
<1> Adds an operation ...

[Instructions]
Can you generate the document relevant to the added code in
asciidoc format?
- Produce only the updated document.
- Maintain the same format as the given document.
- Please do not put the code itself. Keep the original format.
- Keep the same sentences as much as possible if the outdated
document exists.

2) Updating outdated document snippets: Finally, in the
second step, the prompt is given to the LLM to get the updated
API document snippet. The input is the prompt, constructed
by Step C.1), and the output is the updated API document
snippet created by the LLM.

IV. EXPERIMENTAL SETUP

A. Research questions

To explore whether LLMs can effectively update API doc-
umentation, we identify five research questions (RQs), as
follows:

TABLE I: Project details, including the most recent version at
the time of the experiment, total lines of source code, number
of releases based on GitHub repository tags, and the total
number of contributors.

Project Version #Lines #Releases #Contributors
Elasticsearch Java v8.17.1 401,906 102 33

Spring-boot v3.5.0-M1 459,736 336 1,133
Hibernate-orm 7.0.0.Beta3 1,338,351 366 562

WildFly 35.0.0.Final 570,025 163 368
Vert.x 5.0.0.CR3 141,033 182 266

• RQ1. How accurately do LLMs identify and update API
references in outdated API documents?

• RQ2. How accurately do LLMs identify and update API
references per change type?

• RQ3. How closely do LLMs updates of the API docu-
ments match the ground truth updates?

• RQ4. How closely do the LLM updates of the API
documents match the ground truth updates per change
type?

• RQ5. To what extent do developers accept the LLM
updates?

B. Target Projects

We selected five target projects from open-source repos-
itories on GitHub. The selection criteria required that the
project was written in Java and used the Asciidoctor tool4

for formatting human-written API documentation. To identify
suitable projects, we examined the most popular repositories
and checked whether they contained API documentation in
.asciidoc or .adoc files. This selection process resulted in the
five projects shown in Table I.

As shown in Table I, the projects span many different
sizes, ranging from 141,033 lines of code to 1,338,351. For
reference, the table also includes the most recent version of
the project at the time of the experiment.

C. Large Language Models

In the experiment, we used five large-scale language mod-
els (LLMs): GPT-4o mini, Claude, Gemini, Llama 3, and
Deepseek. We used the API services of GPT-4o mini, Claude
3.7 Sonnet, and Gemini 2.0 Flash, respectively. For the
Llama 3 and Deepseek models, we leveraged llama3:70b and
deepseek-r1:70b with Ollama5 in a local environment.

D. Ground-truth Data

We use the developers’ manual updates as ground-truth
data. To identify these updates, the first author of this paper
started with the latest version of each project and examined
the changes in API documentation between two consecutive
versions. To reduce the time required for a manual investiga-
tion, a semi-automated approach was employed. This process

4The Asciidoctor tool assists developers to format API documentation and
parse it into various formats. Refer to https://asciidoctor.org/.

5https://ollama.com/

TABLE II: Number of API changes for each project, including
modifications, deletions, additions, and the total number of
changes.

Project #Modifications #Deletions #Additions #Totals
Elasticsearch Java 2 1 7 10

Spring-boot 6 2 6 14
Hibernate-orm 5 4 1 10

WildFly 10 2 0 12
Vert.x 5 4 2 11
Totals 28 13 16 57

involved breaking down the API document down to the docu-
ment snippet level, as described in Step III.B.1. The author
then identified the snippets that contained API references
and manually compared code-relevant updates between corre-
sponding snippets from successive revisions. The investigation
continued until 10 ˜ 15 ground-truth samples were collected
for each project. I total, the process took two weeks for the
five projects.

Across all projects, 57 ground truth updates were identified.
Table II shows the detailed information for each project and
each change type. For example, for Elasticsearch Java, there
were 10 samples in the ground-truths dataset: 2 modifications,
1 deletion, and 7 additions.

E. Measurements

First, to measure the accuracy of LLM’s identification of
outdated API references, we used Precision Recall, and F1-
scores, as shown in equation (1) and (2). Precision measures
the proportion of correctly identified updates among all up-
dates made by the LLM, while recall quantifies the proportion
of correctly identified updates relative to all ground-truth. The
F1 score, defined as the harmonic mean of precision and recall,
provides a balanced measure of the performance.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(1)

where TP (True Positives) represents the number of updates
correctly identified by the LLM, FP (False Positives) refers to
updates made by the LLM that are not present in the ground-
truth dataset, and FN (False Negatives) denotes updates present
in the ground-truth dataset but missed by the LLM.

F1-Score = 2 · Precision · Recall
Precision + Recall

(2)

Second, to understand how closely an LLM updates API
document snippets to a human, we used three metrics BLEU
(Bilingual Evaluation Understudy), Rouge-L (Recall-Oriented
Understudy for Gisting Evaluation-L), and Meteor (Metric for
Evaluation of Translation with Explicit ORdering).

The BLEU (Bilingual Evaluation Understudy) metric eval-
uates the quality of generated text by comparing it to human
written text. Equation (3) calculates BLEU by multiplying
the Brevity Penalty (BP) with the Geometric Average of the
Precision Scores.

https://asciidoctor.org/

BLEU = BP · exp

(
1

N

N∑
n=1

log pn

)
(3)

Equation (4) calculates Brevity Penalty (BP), where |c|
represents the length of the generated text by an LLM and
|r| represents the length of the human-written text.

BP =

{
1, if |c| > |r|
exp(1− |r|

|c|), if |c| ≤ |r|
(4)

Equation (5) calculates the precision score of n-grams. In
the equation, Countclip(n) represents the number of clipped,
correctly predicted n-grams between the generated text and the
human-written text. Count(n) is the total number of n-grams
in the generated text, and N represents the maximum degree
of the n-grams. In our experiment N is 4.

pn =
Countclip(n)

Count(n)
(5)

ROUGE-L (Recall-Oriented Understudy for Gisting
Evaluation-L) evaluates the similarity between a generated
text and a human-written text based on the longest common
subsequence (LCS). Equation (6) calculates the Precision,
Recall, and F1-Score for ROUGE-L. In the equation,
LCS(c, r) denotes the length of the longest common
subsequence of two sentences c and r. In this paper,
LOUGE-L refers to the F1-Score in equation (6).

P =
LCS(c, r)

|c|
, R =

LCS(c, r)

|r|
, F1 =

2 · P ·R
P +R

(6)

METEOR (Metric for Evaluation of Translation with Ex-
plicit ORdering) extends BLEU by considering synonyms,
stemming (root forms of words), and word order [25]. It
uses exact word matches first, then checks for synonyms and
paraphrases. Equation (7) calculates the METEOR metric by
taking into account the harmonic mean, Fm, in Equation (8)
and the chunk penalty in Equation (9).

METEOR = Fm · (1− Penalty) (7)

Equation (8) finds the number of matched unigrams between
generated text and human-written text. First, it counts the
number of unigrams that match exactly, and then it counts the
unigrams that match with synonyms. Based on the matched
unigrams, Equation (8) calculates the harmonic mean, Fm.

P =
match(c, r)

|c|
, R =

match(c, r)

|r|
, Fm =

10 · P ·R
9P +R

(8)
Equation (9) calculates the chunk penalty, where chunks are

a set of consecutive aligned words between the human-written
text and the generated text. The more similar the two texts are,
the fewer chunks there are and the smaller the penalty.

Penalty = 0.5 ·
(

|chunks|
match(c, r)

)3

(9)

F. Experimental procedures

We describe the experimental procedures for RQs. For RQ1,
RQ2, RQ3, and RQ4, we conducted an experiment, based
on the ground-truth dataset described in Section IV-B. To
prepare the experiment, we first applied the proposed method
to the API document snippets in the ground-truth dataset and
obtained the updated document snippets per each project.
Then, we compared the document snippets updated by an
LLM with the document snippets updated by developers in
the ground-truth dataset.

1) Experimental procedure for RQ1: For RQ1, we eval-
uated if API references in outdated API document snippets
were accurately updated. An API reference was marked as a
true positive if it was correctly updated to match the changes
made by developers in the ground-truth dataset. If it remained
unchanged despite requiring an update, it was marked as a
false negative. We then calculated the precision, recall, and
F1 score according to Equations (1) and (2).

2) Experimental procedure for RQ2: For RQ2, we ana-
lyzed the F1 scores that we obtained from the experiment.
To compare the accuracy across different change types, we
grouped F1 scores into three groups: Modifications, Deletions,
and Additions.

3) Experimental procedure for RQ3: For RQ3, we took the
API document snippets updated by an LLM and compared
them to the API document snippets updated by developers in
the ground-truth dataset. To assess their similarity, we used
three metrics: BLUE, ROUGE-l, and METEOR.

4) Experimental procedure for RQ4: For RQ4, we analyzed
the METEOR scores from RQ3 and compared across change
types. To accomplish this, we grouped the scores into Modi-
fications, Deletions, and Additions.

5) Experimental procedure for RQ5: For RQ5, we applied
the proposed approach to the latest version of each project’s
API documentation. We manually examined the API snippets
updated by the LLM, reviewing them sentence by sentence
to ensure accuracy. Finally, we reported the identified API
document updates as issue reports for developer review.

V. EXPERIMENTAL RESULTS

A. Results for RQ1

To answer RQ1, we show the average F1-score of all
projects in both Figure 2 and Table 3. From these results, we
observe that GPT-4o and Claude maintain a consistently higher
F1-score than Deepseek, Llama3, and Gemini over projects.
Both Claude and GPT-4o maintain scores above or equal to
0.9. Deepseek performs only moderately worse at around 0.8.
LLama3 performs at 0.735. Gemini performs at 0.697.

Summary: Given change rule information, GPT-4o showed
the highest averaged F1-score of 0.921, and Claude showed
the second highest F1-score of 0.900 in identifying and
updating API references in API document snippets.

Elastic Spring Hibernate Wildfly Vert.x Total
Project

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

GPT-4o Claude Gemini Llama 3 Deepseek

Fig. 2: Average F1-score of LLMs in identifying and updating API references in API document snippets across projects.

TABLE III: F1-scores of LLMs in identifying and updating
API references in API document snippets.

GPT-4o Claude Gemini Llama 3 Deepseek
Elastic-search 0.857 0.857 0.667 0.625 0.700
Spring-boot 0.867 0.882 0.857 0.714 0.813

Hibernate-orm 0.889 0.815 0.815 0.800 0.800
Wildfly 1.000 0.970 0.800 0.739 0.810
Vertx 0.960 0.960 0.455 0.762 .833
Total 0.921 0.900 0.697 0.735 0.797

B. Results for RQ2

For RQ2, we analyzed the F1 scores according to change
types. Figure 3 shows a box plot of F1 scores per each change
type. The median value for the modification case is close to 1,
with low variability and consistent performance. The median
value for the deletion case is also close to 1 and has a similar
distribution to that of the modification case. F1 scores for the
addition case are more volatile, ranging from 0 to 1.

Based on our analysis, we found that, for modification and
deletion cases, LLMs successfully updated document snippets.
However, they often removed pieces of code information that
should have been retained (FPs). For the case of additions, the
LLMs often missed pieces of code information that should
have been added (FNs) and frequently inserted source code
that was not tagged in the AsciiDoc format (FPs).

Summary: LLMs accurately updated document snippets
for modification and deletion cases. The performance of
LLMs for addition case was varied, owing to frequently
missed information or incorrect references to code.

C. Results for RQ3

For RQ3, we evaluated the similarity between LLM docu-
ment updates and the ground truth updates. While the previous

Addition Modification Deletion
0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Fig. 3: F1-scores according to the change types.

RQs focused on the factual correctness of the updates, this
RQ examines how closely the updates resemble the manual
versions. Table IV shows milarity scores using the BLUE,
ROUGE-l, and METEOR metrics. The average scores in the
last row of each metric indicate that GPT-4o consistently
achieved the highest values.

Looking in detail, GPT-4o scores the highest across 7 out
of 15. In the 8 cases where it is not the top performer, it ranks
second in 7 of them. In all but one case, GPT-4o receives
higher similarity scores to the updated documentation than the
original, outdated documentation. This indicates that GPT-4o’s
updates bring the documentation closer to the ground-truth
version created by developers in most cases.

The one exception is the WildFly project using the ME-
TEOR metric, where the outdated document snippets show
the highest similarity to the updated documentation, suggest-
ing minimal changes were made between versions. In such
cases, the LLM may be introducing unnecessary modifications,
leading to lower similarity scores.

TABLE IV: The similarity between LLM updates and the ground truths

Metrics Projects Outdated GPT-4o Claude Gemini Llama 3 Deepseek

BLEU

Elasticsearch Java 0.275 0.448 0.454 0.428 0.345 0.336
Spring-boot 0.426 0.488 0.499 0.417 0.480 0.412

Hibernate-orm 0.707 0.759 0.761 0.749 0.626 0.616
WildFly 0.879 0.881 0.866 0.771 0.752 0.764

Vertx 0.788 0.804 0.763 0.716 0.751 0.743
Total 0.614 0.672 0.665 0.610 0.591 0.572

ROUGE-L

Elasticsearch Java 0.297 0.421 0.429 0.428 0.387 0.357
Spring-boot 0.491 0.582 0.604 0.540 0.570 0.520

Hibernate-orm 0.799 0.836 0.837 0.831 0.706 0.708
WildFly 0.909 0.923 0.922 0.870 0.857 0.849

Vertx 0.843 0.858 0.812 0.825 0.806 0.804
Total 0.667 0.723 0.721 0.696 0.668 0.648

METEOR

Elasticsearch Java 0.326 0.637 0.599 0.627 0.478 0.504
Spring-boot 0.470 0.606 0.620 0.555 0.597 0.526

Hibernate-orm 0.836 0.861 0.836 0.834 0.765 0.743
WildFly 0.942 0.936 0.922 0.833 0.851 0.825

Vertx 0.820 0.839 0.832 0.795 0.811 0.796
Total 0.676 0.771 0.759 0.722 0.700 0.675

Based on the METEOR score, we performed the Wilcoxon
Signed-Rank test to verify statistical significance. GPT-4o
and Claude were found to be significantly different from
outdated API documentation (p < 0.05). On the other hand,
Gemini, Llama 3, and Deepseek were found to be statistically
insignificant (p ≥ 0.05).

Summary: Based on ground truth updates, GPT-4o yielded
consistently highest values. This suggests that GPT-4o’s
updates bring the documentation closer to the ground-truth
version created by developers in most cases.

D. Results for RQ4

For RQ4, we evaluated the similarity scores from RQ3,
comparing them across the different the change types. For
comparison, we chose to focus on the METEOR metric. Figure
4 shows the METEOR scores for additions, deletions, and
modifications.

In the additions case, GPT-4o, Claude, and Gemini all per-
formed well. However, the interquartile range (IQR) of GPT-4o
is narrower compared to Claude and Gemini, indicating that
GPT-4o produced more consistent METEOR values than the
other two models. In all cases, the LLM-generated updates
received higher scores than the outdated documentation.

In the modification case, GPT-4o received the highest av-
erage METEOR score because it successfully updated only
the API references. In contrast, other models made additional
updates to other parts of the documentation, which were
not necessary. As a result, the METEOR value of GPT-4o
is slightly higher than that of the outdated API document
snippets, while the METEOR scores for the other models are
lower than those of the outdated documentation.

In the deletion case, Claude showed the highest averaged
METEOR value. However, GPT-4o, Claude, and Gemini all
received higher average METEOR scores, than the average
value for the outdated API document snippets.

Summary: While Claude showed the highest METEOR
values in the deletion case, GPT-4o showed consistently
high METEOR values in three cases.

E. Results for RQ5

To understand if developers accept the LLM updates, we
shared the issue reports from the LLMs updates on the most
recent version of the project and received developers’ feedback
on five cases.

There are two lessons learned. First, the updating sugges-
tions should be concrete. For the hibernate-orm project, we re-
ported three outdated API references with update suggestions
at sentence level 6. According to the developer’s request, the
first author created a pull request with the suggested edits 7. In
the project, two concrete update suggestions were accepted by
developers. However, one update suggestion was not, because
the developers asked “Which configuration settings?” The
API name GenerationT ime related to the third suggestion
belongs to the deletion case in our update, and we have not
found a replacement for it. However, the developer expected to
describe a replacement rather than delete the code information.

Second, accurate outdated information is important in such a
report. For the spring-boot project, we reported two outdated
API references with update suggestions at sentence level 8.
Unfortunately, two outdated API references were not accepted
by developers. Then, developers mentioned, “We’re a small
team, please be considerate of our time before submitting the
output of an automated tool.” The reason is that our initial
Java parser did not properly analyze some source files due to
an unmatched Java version. We inaccurately reported outdated
API references. This is not directly related to the updates by
LLM, which are the main focus of this study, but it does mean

6https://hibernate.atlassian.net/browse/HHH-18993
7https://github.com/hibernate/hibernate-orm/pull/9521
8https://github.com/spring-projects/spring-boot/issues/43645

https://hibernate.atlassian.net/browse/HHH-18993
https://github.com/hibernate/hibernate-orm/pull/9521
https://github.com/spring-projects/spring-boot/issues/43645

Original GPT-4o Claude Gemini
Llama 3

Deepseek

Addition

0.0

0.2

0.4

0.6

0.8

1.0

M
ET

EO
R

Original GPT-4o Claude Gemini
Llama 3

Deepseek

Modification

0.0

0.2

0.4

0.6

0.8

1.0

M
ET

EO
R

Original GPT-4o Claude Gemini
Llama 3

Deepseek

Deletion

0.2

0.4

0.6

0.8

1.0

M
ET

EO
R

Fig. 4: The similarity between LLM document updates and
the ground truth updates according to the change types.

that the API change information must be accurately extracted
in the first phase of our approach to be effective.

Summary: Developers accepted two out of five updating
suggestions; they asked us to create a pull request by
ourselves to reflect the changes.

VI. DISCUSSION

Our experimental results demonstrated higher F1-Scores,
BLEU values, and METEOR values of GPT-4o than those of
the outdated API document snippets. This suggests that GPT-
4o’s updates improved the alignment of the documentation,
moving it closer to the intended ground-truth updates. In this
section, we demonstrate the examples of GPT-4o’s updates and
discuss advantages and disadvantages of LLM updates.

GPT-4o’s update for a modification case ..
Configure Two DataSources:. . .
If you create your own ‘DataSource’, the auto-configuration backs off. In
the following example, we provide the exact same feature set as the
auto-configuration provides on the primary data source:
-include-code::MyDataSourcesConfiguration[]
+include-code::MyAdditionalDataSourceConfiguration[]
GPT-4o’s update for a deletion case ..
==== Indexing application objects . . .
[“source”,“java”]
————————————————–
include-tagged::{doc-tests-src}/usage/IndexingBulkTest.java[bulk-
objects]
————————————————–
<1> Adds an operation (remember that ¡¡listsandmaps,list properties are
additive>>)...
==== Indexing raw JSON data . . .
-[“source”,“java”]
————————————————–
-include-tagged::{doc-tests-src}/usage/IndexingBulkTest.java[read-json]
————————————————–
-We can now read the contents of the log directory and send it to es:
-[“source”,“java”]
————————————————–
-include-tagged::{doc-tests-src}/usage/IndexingBulkTest.java[bulk-json]
————————————————–
GPT-4o’s update for an addition case ..

+==== Using the Bulk Ingester

+The ‘BulkIngester’ is a utility for efficiently processing large volumes
of bulk operations, such as indexing logs. It allows you to define a batch
of operations that are executed in bulk to improve performance. . .
[“source”,“java”]
————————————————–
+include-tagged::{doc-tests-src}/usage/IndexingBulkTest.java[bulk-
ingester-setup]
————————————————–
+<1> Configures the ‘BulkIngester’ with the Elasticsearch client. You
must provide an instance of ‘esClient’ to facilitate communication with
the Elasticsearch server. . .
Ground-truth update for an addition case ..
+include::{docs-java}/features/testing/springbootapplications/auto-
configuredspringrestdocs/withwebtestclient/MyWebTestClientBuilder-
CustomizerConfiguration.java[]
GPT-4o’s update ...
+include::{code-examples}/web/client/WebTestClientRestDocumentation-
Example.java[tag=customizer]
Claude’s update ...
+include::{code-examples}/features/testing/springbootapplications/auto-
configuredspringrestdocs/withwebtestclient/MyWebTestClientBuilder-
CustomizerConfiguration.java[]
Gemini’s update ...

Llama’s update ...
+include::{code-examples}/web/client/MyWebTestClientBuilder-
CustomizerConfiguration.java[tag=restDocumentation]
Deepseek’s update ...
+include::{code-examples}/web/client/MyWebTestClientBuilder-
CustomizerConfiguration.java[tag=customizer]

Fig. 5: Examples of document updates

A. Examples of GPT updates

In Figure 5, we demonstrate examples of GPT’s updates to
the documentation. The example in the first row illustrates a
modification update to the API document snippets in Spring-
boot. In this case, GPT-4o only modified the API name in
the snippet without altering the content of the text. Through
comparison with the ground-truth updates, we verified that
GPT-4o accurately updated the API reference.

In the second, we present a deletion update to the API
document snippets in Elasticsearch Java. The document sec-
tion originally had three API references, but the API function
related to read-json had been removed from the source code.
With this information, GPT-4o deleted the entire document
snippet related to read-json to reflect the code change.

The example in the third row illustrates an addition update
to the Elaticsearch Java Project. In this case, a function
related to bulk-ingester-setup was added to the source code.
Therefore, the intended updates was for GPT to generate
the API document snippet describing bulk-ingester-setup. The
example demonstrates that GPT-4o successfully generated
an API references describing bulk-ingester-setup, including
relevant source code and a description of it in a similar format
to the other descriptions.

The example in the last row illustrates an addition update
to the Spring-boot Project. With the example, we discuss the
variations between LLMs in updating a single code reference.
In this case, GPT-4o failed to reflect the path, file name, and
namespace {docs-java}. GPT-4o also added an unnecessary
tag customizer (FP). Next, Claude correctly updated every-
thing except the namespace (TP). Gemini didn’t generate the
relevant code information at all (FN). Llama3 failed to reflect
the path, file name, and namespace and added an invalid
tag, restDocumentation (FP). Deepseek also failed to reflect
reflect the path, file name, namespace (FP).

B. Advantages and Disadvantages of LLM updates

Through these examples, we gained insight into both the
advantages and disadvantages of LLM updates. LLMs can
effectively update API document snippets based on change
rules, without relying on traditional linguistic analysis. When
provided with the relevant API change rules in the prompt,
LLMs—particularly GPT-4o—accurately applied this informa-
tion to update the API document snippets.

On the other hand, we also observed certain drawbacks
of the LLM-generated updates. LLMs sometimes made un-
necessarily updates to content that was unrelated to the code
changes. This explains why outdated API document snippets
showed a higher METEOR value for the WildFly project
in Table IV. Developers typically update API documentation
with minimal sentence modifications, whereas LLMs tend to
introduce larger, sometimes unnecessary changes. Also, we
observed variation across different LLM models where some
LLMs included the source code itself or added a extensive
descriptions, deviating from the expected updates.

VII. THREATS TO VALIDITY

Internal threats to validity are as follows. First, we utilized
57 ground-truths found in the revisions of API documentation.
The limited number of ground truths makes it difficult to
guarantee the reliability and consistency of the experimental
results. Second, our ground-truths were limited to document
snippets containing an outdated API reference. However, there
were multiple outdated API references in a single document
snippet. In future research, it is worth collecting such ground-
truths for document updates.

External threats to validity are as follows. We conducted our
experiments on the Java projects that use the Asciidoctor tool.
There are several generalization issues. First, the phase 2 of
our approach assumes the markup language of the asciidoctor
tool. In this respect, if other API documentation tools are used,
the phase may need to be modified to be reusable. However,
this change is limited to modifying the approach in splitting
API documentation in phase 2. It does not impact the overall
experimental results. Second, our experiment is limited to
Java projects. We tried to extend our experiment to Python
projects, but soon found that Python projects use different
documentation methods and tools. Therefore, our results are
limited to the Java projects and extending our study to other
languages could be another study.

VIII. CONCLUSION

In this paper, we propose updating API documentation by
augmenting LLMs with code changes. To evaluate this ap-
proach, we conduct an experiment using API document snip-
pets from 5 different open-source projects. In the evaluation
results, GPT4o and Claude correctly identify and update code
information in outdated API document snippets, achieving F1-
scores of 0.921 and 0.900, respectively. GPT-4o’s updates also
aligned with the manual updates, achieving a METEOR score
of 0.771, a ROUGE-l score of 0.723, and a BLEU score of
0.672 - higher than those of the outdated API sections. This
indicates that the document snippets updated by GPT-4o are
more similar to the documents updated by humans. Claude
also demonstrated comparable performance in updating API
document snippets. Our results demonstrate the potential of
LLMs in updating API documentation using change rules.

We consider the following future work. First, we did not
evaluate the process of combining updated document snippets
to create a complete API documentation. Therefore, we plan to
automate the full process by linking snippets to produce a fully
updated API documentation. Second, our study focused solely
on updating API documents. In the future, we aim to extend
this research to updated multiple software artifacts throughout
the software development process. We will also continue to
conduct user studies and apply our approach to real-world
projects to further validate its effectiveness.

REFERENCES

[1] S. C. B. De Souza, N. Anquetil, and K. M. de Oliveira, “A study of
the documentation essential to software maintenance,” in Proceedings of
the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information, pp. 68–75, 2005.

[2] S. Lee, R. Wu, S.-C. Cheung, and S. Kang, “Automatic detection and
update suggestion for outdated api names in documentation,” IEEE
Transactions on Software Engineering, vol. 47, no. 4, pp. 653–675, 2019.

[3] Oracle, “How to write doc comments for the javadoc tool,” 2024.
Accessed: 2025-03-05.

[4] D. van Heesch, “Documenting the code,” 2024. Accessed: 2025-03-05.
[5] H. Zhong and Z. Su, “Detecting api documentation errors,” in Proceed-

ings of the ACM SIGPLAN international conference on Object oriented
programming systems languages & applications, pp. 803–816, 2013.

[6] W. S. Tan, M. Wagner, and C. Treude, “Detecting outdated code element
references in software repository documentation,” Empirical Software
Engineering, vol. 29, no. 1, p. 5, 2024.

[7] W. S. Tan, M. Wagner, and C. Treude, “Wait, wasn’t that code here
before? detecting outdated software documentation,” in 2023 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
pp. 553–557, IEEE, 2023.

[8] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation issues
unveiled,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pp. 1199–1210, IEEE, 2019.

[9] B. Dagenais and M. P. Robillard, “Using traceability links to recommend
adaptive changes for documentation evolution,” IEEE Transactions on
Software Engineering, vol. 40, no. 11, pp. 1126–1146, 2014.

[10] C. Yang, J. Liu, B. Xu, C. Treude, Y. Lyu, M. Li, and D. Lo,
“Apidocbooster: An extract-then-abstract framework leveraging large
language models for augmenting api documentation,” arXiv preprint
arXiv:2312.10934, 2023.

[11] N. Jain, R. Kwiatkowski, B. Ray, M. K. Ramanathan, and V. Kumar,
“On mitigating code llm hallucinations with api documentation,” arXiv
preprint arXiv:2407.09726, 2024.

[12] L. Fan, J. Liu, Z. Liu, D. Lo, X. Xia, and S. Li, “Exploring the
capabilities of llms for code change related tasks,” ACM Transactions
on Software Engineering and Methodology, 2024.

[13] K. R. Dearstyne, A. D. Rodriguez, and J. Cleland-Huang, “Supporting
Software Maintenance with Dynamically Generated Document Hierar-
chies,” Aug. 2024. arXiv:2408.05829 [cs].

[14] J. Y. Khan and G. Uddin, “Automatic code documentation generation
using gpt-3,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, pp. 1–6, 2022.

[15] Y. Su, C. Wan, U. Sethi, S. Lu, M. Musuvathi, and S. Nath, “Hotgpt:
How to make software documentation more useful with a large language
model?,” in Proceedings of the 19th Workshop on Hot Topics in
Operating Systems, pp. 87–93, 2023.

[16] K. Lazar, M. Vetzler, G. Uziel, D. Boaz, E. Goldbraich, D. Amid,
and A. Anaby-Tavor, “Specrawler: Generating openapi specifications
from api documentation using large language models,” arXiv preprint
arXiv:2402.11625, 2024.

[17] C. Wang, K. Huang, J. Zhang, Y. Feng, L. Zhang, Y. Liu, and X. Peng,
“How and why llms use deprecated apis in code completion? an
empirical study,” arXiv preprint arXiv:2406.09834, 2024.

[18] Y. Yu, G. Rong, H. Shen, H. Zhang, D. Shao, M. Wang, Z. Wei, Y. Xu,
and J. Wang, “Fine-tuning large language models to improve accuracy
and comprehensibility of automated code review,” ACM Transactions on
Software Engineering and Methodology, 2024.

[19] A. Imani, I. Ahmed, and M. Moshirpour, “Context conquers parameters:
Outperforming proprietary llm in commit message generation,” arXiv
preprint arXiv:2408.02502, 2024.

[20] L. Zhang, H. Zhang, C. Wang, and P. Liang, “Rag-enhanced commit
message generation,” arXiv preprint arXiv:2406.05514, 2024.

[21] J. Li, D. Faragó, C. Petrov, and I. Ahmed, “Only diff is not enough:
Generating commit messages leveraging reasoning and action of large
language model,” Proceedings of the ACM on Software Engineering,
vol. 1, no. FSE, pp. 745–766, 2024.

[22] Y. Zhang, “Detecting code comment inconsistencies using llm and
program analysis,” in Companion Proceedings of the 32nd ACM In-
ternational Conference on the Foundations of Software Engineering,
pp. 683–685, 2024.

[23] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in Pro-
ceedings of the 40th international conference on software engineering,
pp. 483–494, 2018.

[24] D. Silva, J. P. da Silva, G. Santos, R. Terra, and M. T. Valente, “Refdiff
2.0: A multi-language refactoring detection tool,” IEEE Transactions on
Software Engineering, vol. 47, no. 12, pp. 2786–2802, 2020.

[25] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evalua-
tion with improved correlation with human judgments,” in Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for
machine translation and/or summarization, pp. 65–72, 2005.

	Introduction
	Related Work
	Studies for outdated API documentation
	Studies of LLMs for API documentation
	Studies of LLMs for code changes

	Proposed Approach
	Extracting API Change Rules
	Identifying Outdated API References
	Splitting API documents into document snippets
	Identifying outdated document snippets

	Updating outdated API Documents
	Forming prompts
	Updating outdated document snippets

	Experimental Setup
	Research questions
	Target Projects
	Large Language Models
	Ground-truth Data
	Measurements
	Experimental procedures
	Experimental procedure for RQ1
	Experimental procedure for RQ2
	Experimental procedure for RQ3
	Experimental procedure for RQ4
	Experimental procedure for RQ5

	Experimental Results
	Results for RQ1
	Results for RQ2
	Results for RQ3
	Results for RQ4
	Results for RQ5

	Discussion
	Examples of GPT updates
	Advantages and Disadvantages of LLM updates

	Threats to Validity
	Conclusion
	References

