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Why MoveMethod Matters
Top-5 most common refactoring

Improves cohesion, reduces coupling 

Reduces Technical Debt and removes code smells: God Class, Feature Envy, Duplicate Code

GOD



3

MoveMethod Refactoring to the Rescue
ElasticSearch (876e7015)

this.resolvePolicy

PolicyResolver



Semi-automated process

No automatic recommendations

Current Move Method Workflow in IntelliJ

JetBrains’ IntelliJ IDEA has Move Method 
capabilities
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Approaches for MM Recommendations
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Static analysis (JMove, JDeodorant)
- thresholds, slow (hours), poor scalability

ML (RMove, PathMove) / DL (FeTruth, Hmove)
- need retraining, overwhelm users

? Optimize software quality metrics

Do not align with how developers refactor code

LLMs

- prolific, capture semantic intuition
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MoveMethod Refactoring Case Study
ElasticSearch (876e7015)

Hmove top-2

Jmove :/LLM - hallucination
this.resolvePolicy

PolicyResolver

LLM – target class 

hallucination



Key Challenges in using LLMs

LLM Hallucinations  - 80% invalid recommendations

Context window limits – can’t reason over large projects

Workflow fit –practical needs to be fast, IDE-integrated, don’t overwhelm developers
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Our Insights

Combine LLM creativity + IDE rigor

Filter hallucination via static preconditions checks in IDE

Semantic embeddings + Refactoring-aware RAG

Few high-quality recommendations (≤3 per class)

Our tool: MM-Assist, an IntelliJ Plugin



MM-Assist: Workflow
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Empirical Evaluation Setup
Two Datasets:
- Synthetic corpus of 235 MM scenarios
- New real-world corpus 210 MM (2024+, OSS), avoids LLM training contamination

Formative study, OSS replication, repository mining, user study, questionnaire survey

Baselines: JMove, FeTruth, HMove, Vanilla LLM

User study: 30 participants, 1 week, own project 
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Results: Synthetic Corpus 
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Metric: Recall@K for top-K recommendations

Synthetic corpus: 235 MM scenarios

MM-ASSIST Recall@1 = 67%, Recall@3 = 75%

1.7x improvement over best baseline

LLM alone performed better than old tools but still plagued by hallucinations



Results: Real-World Corpus + User study

Replicated 210 OSS refactorings (uncontaminated by LLM training) 

MM-ASSIST Recall@3 = 80% vs 33% (best baselines) → 2.4x improvement.

Runtime: ~30 seconds vs hours or days for baselines.

User study: 30 devs, used on own project for a week
1150 analyzed classes -> gave recommendations in 350 classes 
83% positive ratings
avg. 7 accepted refactorings/user.
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MM-Assist Summary

First end-to-end LLM-powered Move Method assistant

LLM  + IDE + Human >> Sum of the individual parts

LLMs (creative)+ IDE (validation) + Refactoring-Aware RAG (lookup)

2–4× better recall, 10–100× faster, 5 cents / class

Trusted by developers (83% positive)

Ongoing work: refactoring agents
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MoveMethod-Assist     DEMO
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ExtractMethod-Assist     DEMO
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Your questions

1. Robustness, Reliability, and Failure Modes (Very Popular)
Core theme: When and why does MM-Assist fail, behave inconsistently, or give brittle results?

2. Subjectivity, Human Judgment, and Architectural Intent (Very Popular)
Core theme: The tension between automated refactoring and human design intent.

3. Generalization Across Codebases, Domains, and Technical Debt (Very Popular)
Core theme: How well does the approach transfer beyond “clean” or familiar projects?

4. Dependence on Language, Tooling, and Ecosystem (Popular)
Core theme: How much of the success is Java- and IntelliJ-specific?

5. Semantics, Embeddings, and Representation Quality (Popular)
Core theme: Are embeddings the “right” abstraction for code organization?
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Your Discussion Points

1. Role of LLM vs. System Orchestration (Very Popular)
Core idea: Understanding what actually drives MM-Assist’s success—LLM reasoning or careful 
system design.

2. Narrow Focus vs. General Insights (Very Popular)
Core idea: Examining whether focusing on Move Method refactoring constrains or sharpens insights.

3. Safety, Correctness, and Refactoring Hygiene (Popular)
Core idea: Concerns around correctness, anti-patterns, and reversibility of refactorings.

4. Metrics, Evaluation, and Recommendation Strategy (Popular)
Core idea: Evaluating the task as a recommendation problem and how we measure success.
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LLMs are Prolific but with High rate of hallucinations: 
- ExtractMethod: 73% rate of hallucinations
- MoveMethod 80% hallucinations 

- PyCraft: 65% hallucinations

- Unit tests: 35% hallucinations

Do what LLM suggests, not what they do => need for powerful validators

○remove hallucinations automatically reusing static analysis from the IDE (e.g., refactoring 

precondition) Where else can we reuse the IDE as validator?

○new static analysis

○dynamic analysis: generated small unit tests in PyCraft, used original code variant as validator

Lessons Learned
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Precise prompt for higher quality suggestions

○append line numbers for the code input 

○ask LLM to give you precise response using line numbers

○ask LLM to specify the output in structured format (JSON): useful if the output is consumed by other 

tools

Few-shot learning worked best for both EM-Assist and PyCraft

For MoveMethod-Assist: RAG needed to focus the LLM laser in large projects, along with Chain-of-

Thought 

Lessons Learned
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To get consistent high-quality suggestions, you need to reprompt  (in the background), 

accumulate results shown to the user

Re-prompting not a waste

Newly-designed ranking to match LLM workflow (e.g., popularity of suggestions, heat map of the 

code affected by suggestions)

Sweet spot: tuning LLM hyperparameters (e.g., temperatures and number of iterations) is essential

•Higher randomness in Large Language Models is preferred when a solid validation framework exists 

Lessons Learned: 
Taming LLM nondeterminism
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MANTRA     DEMO

21



Your questions

Why does the reviewer agent contribute the most to the system’s performance?

How to use Mantra?

Why were these six refactorings chosen over other common refactorings?

Would MANTRA still work if refactorings were embedded in ongoing development rather than 
isolated “pure” commits?

Are compilation and test success sufficient proxies for refactoring correctness in all cases?

How often does the repair phase introduce changes that go beyond structural refactoring?

How dependent is MANTRA on high-quality test coverage?
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Your discussion points

1> Trust, Hallucinations, and What “Correctness” Means
Whether MANTRA’s safeguards are actually sufficient, and what we should accept as “correct” in 
LLM-assisted refactoring.

2> Why the Reviewer Agent Matters So Much
The ablation result that the reviewer agent is central to MANTRA’s success.

3> Cognitive Load, Developer Experience, and Human Trust
Whether agentic tools truly help developers—or just shift effort elsewhere.
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Project Ideas

1> What new project ideas did you get from reading these 4 refactoring papers this week?

Potential new directions:
- Extend CoRenameAgent to support new refactoring kinds (e.g., MoveMethod – close to 90% of 

move methods are performed in a coordinated style, other common program changes)
- Extend MoveMethod Assist to support new refactoring kinds (e.g., Split Class)
- Extend MANTRA to support new refactoring kinds
- Extend any of these tools to support other languages (e.g., Python), IDEs (VSCode), Language/IDE 

independence (e.g., via LSP)
- Expand RefactoringBench to include new, uncontaminated, real-world refactorings
- Implement a refactoring Agent and evaluate it against the baseline implementation from 

RefactorBench or MANTRA
- Design a new agent that introduces Design Patterns (e.g., from the OOAD class, Gang of Four)
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