Auckland, New Zealand

Together We Are Better

LLM, IDE and Semantic Embedding to Assist Move Method Refactoring

Abhiram Bellur University of Colorado Boulder Fraol Batole Tulane University

Malinda Dilhara Amazon Web Services Mohammed Raihan Ullah University of Colorado Boulder
Yaroslav Zharov JetBrains Research Timofey Bryksin JetBrains Research

Kai Ishikawa NEC Corporation Haifeng Chen NEC Laboratories America

Masaharu Morimoto NEC Corporation Shota Motoura NEC Corporation

Takeo Hosomi NEC Corporation Tien N. Nguyen University of Texas at Dallas

Hridesh Rajan Tulane University Nikolaos Tsantalis Concordia University

Danny Dig University of Colorado Boulder, JetBrains Research

JET
BRAINS

&>

Boulder

https://conf.researchr.org/profile/icsme-2025/abhirambellur
https://conf.researchr.org/profile/icsme-2025/fraolbatole2
https://conf.researchr.org/profile/icsme-2025/malindadilharamalwalaarachchige
https://conf.researchr.org/profile/icsme-2025/mohammedraihanullah1
https://conf.researchr.org/profile/icsme-2025/yaroslavzharov
https://conf.researchr.org/profile/icsme-2025/timofeybryksin
https://conf.researchr.org/profile/icsme-2025/kaiishikawa
https://conf.researchr.org/profile/icsme-2025/haifengchen
https://conf.researchr.org/profile/icsme-2025/masaharumorimoto1
https://conf.researchr.org/profile/icsme-2025/shotamotoura
https://conf.researchr.org/profile/icsme-2025/takeohosomi
https://conf.researchr.org/profile/icsme-2025/tiennguyen
https://conf.researchr.org/profile/icsme-2025/hrideshrajan
https://conf.researchr.org/profile/icsme-2025/nikolaostsantalis

Why MoveMethod Matters

Top-5 most common refactoring
Improves cohesion, reduces coupling

Reduces Technical Debt and removes code smells: God Class, Feature Envy, Duplicate Code

MoveMethod Refactoring to the Rescue
ElasticSearch (876e7015)

public class FEsglSession {
private PolicyResolver policyResolver;

/* Resolves a set of policies and adds them to

a given resolution.*/

rivate void resolvePolicvy (:
public voild execute (EsglQueryRequest request, ... " K PolicyResolver

ActionListener groupedListener,

LOGGER.debug ("ESQL query:\n{}", request.quervy()):;

| | | Set policyNames,
private LogilcalPlan parse(String query,

| | Resolution resolution) {
public void analyzedPlan(...) {...}

public void optimizedPlan(...
for (policyName : policyNames)

this.resolvePolicy

private voild preAnalyze (...
policyName,

resolution.resolvedPolicilies () : :add)
resolvePolicy (groupedListener, policyNames, resolution);

) &

policyResolver.resolvePolicy(...)

Current Move Method Workflow In IntelliJ

ne) index » (&) AtomicReader = &) termDocsEnum 2~ Current File ¥ Git: ®© Q &

v

"

= nStringBuilder.java t ArrayUtil.java AttributeSource.java (&) TermVectorsReader.java (=) AtomicReader.java v

Ab5 3 A v

JetBrains' Intellid IDEA has Move Method : B

Il public abstract Bits getLiveDocs();

capabilities :

@ [public FixedBitSet correctBits(DuplicateFilter duplicateFilter, Bits acceptDocs) throws IOException {

s607 juelsissy bBulioloejay

SUOIIEOIHION B

FixedBitSet bits = new FixedBitSet(maxDoc()); //assume all are INvalic
Terms terms = fields().terms(duplicateFilter.);
. if (terms == null) {
Semi-automated Process
}

Wy s

TermsEnum termsEnum = terms.iterator(null);
DocsEnum docs = null;
while (true) {

No automatic recommendations otesner curstors = torascnn. axt):

if (currTerm == null) {

break;
} else {
docs = termsEnum.docs(acceptDocs, docs, DocsEnum.);
int doc = docs.nextDoc();
if (doc != DocldSetIterator.) o —
if (duplicateFilter. == KeepMode.) o =
bits.set(doc); I
} else {
int lastDoc = : -
while (true) {

lastDoe = doc:
® Services

142:33 LF UTF-8 2spaces* P main T

Approaches for MM Recommendations

. Static analysis (JMove, JDeodorant)
- thresholds, slow (hours), poor scalability

& ML (RMove, PathMove) / DL (FeTruth, Hmove)
- need retraining, overwhelm users

‘ Optimize software quality metrics

Do not align with how developers refactor code

LLMs
- prolific, capture semantic intuition

MoveMethod Refactoring Case Study
ElasticSearch (876e7015)

public class FEsglSession {
private PolicyResolver policyResolver;

/* Resolves a set of policies and adds them to

a given resolution.*/
rivate void resolvePolicy (. :
public void execute (EsglQueryRequest request, ... " Y :}>- /w PolicyResolver
ActionListener groupedListent LLM . target CIaSS
hallucination

LOGGER.debug ("ESQL query:\n{}", request.quervy()):;

Y - N | e ,-..f-"I\T—a-meSI
private LogicalPlan parse(String query, ... c .. Hm0ve top_2

. . resolution) {
public void analyzedPlan(...) {...}

public void optimizedPlan(...) {...

LLM - hallucination Jmove :/

private void preAnalyze(...) {

for (policyName : policyNames) {

this.resolvePolicy

policyName,

resolution.resolvedPolicilies () : :add)
resolvePolicy (groupedListener, policyNames, resolution);

) &

policyResolver.resolvePolicy(...)

Key Challenges in using LLMs

LLM Hallucinations - 80% invalid recommendations
Context window limits — can't reason over large projects

Workflow fit —practical needs to be fast, IDE-integrated, don't overwhelm developers

Our Insights

Combine LLM creativity + IDE rigor

Filter hallucination via static preconditions checks in IDE
Semantic embeddings + Refactoring-aware RAG

Few high-quality recommendations (<3 per class)

Our tool: MM-Assist, an IntelliJ Plugin

MM-Assist: Workflow

Empirical Evaluation Setup

Two Datasets:
- Synthetic corpus of 235 MM scenarios
- New real-world corpus 210 MM (2024 +, OSS), avoids LLM training contamination

Formative study, OSS replication, repository mining, user study, questionnaire survey
Baselines: JMove, FeTruth, HMove, Vanilla LLM

User study: 30 participants, 1 week, own project

Results: Synthetic Corpus

Metric: Recall@K for top-K recommendations

Synthetic corpus: 235 MM scenarios

MM-ASSIST Recall@1 = 67%, Recall@3 = 75%
improvement over best baseline

LLM alone performed better than old tools but still plagued by hallucinations

Results: Real-World Corpus + User study

Replicated 210 OSS refactorings (uncontaminated by LLM training)

MM-ASSIST Recall@3 = 80% vs 33% (best baselines) > 2.4x improvement.

Runtime: ~30 seconds vs hours or days for baselines. F
B |

User study: 30 devs, used on own project for a week l
1150 analyzed classes -> gave recommendations in 350 classes b T

83% positive ratings _—

avg. 7/ accepted refactorings/user.
Skeptical about Al, =
but glad to delegate

grunt work

MM-Assist Summary

First end-to-end LLM-powered Move Method assistant

LLM + IDE + Human >> Sum of the individual parts

LLMs (creative)+ IDE (validation) + Refactoring-Aware RAG (lookup)
2-4x petter recall, 10-100x faster, 5 cents / class

Trusted by developers (83% positive)

Ongoing work: refactoring agents

Replication package for
ICSME'25 - MM-Assist!

Together We Are Better: LLM, IDE and Semantic Embedding to
Assist Move Method Refactoring

Download datasets J

| View on GitHub Download plugin

MoveMethod-Assist DEMO

ExtractMethod-Assist DEMO

Your questions

1. Robustness, Reliability, and Failure Modes (Very Popular)
Core theme: When and why does MM-Assist fail, behave inconsistently, or give brittle results?

2. Subjectivity, Human Judgment, and Architectural Intent (Very Popular)
Core theme: The tension between automated refactoring and human design intent.

3. Generalization Across Codebases, Domains, and Technical Debt (Very Popular)
Core theme: How well does the approach transfer beyond “clean” or familiar projects?

4. Dependence on Language, Tooling, and Ecosystem (Popular)
Core theme: How much of the success is Java- and IntellidJ-specific?

5. Semantics, Embeddings, and Representation Quality (Popular)
Core theme: Are embeddings the “right” abstraction for code organization?

Your Discussion Points

1. Role of LLM vs. System Orchestration (Very Popular)
Core idea: Understanding what actually drives MM-Assist’'s success—LLM reasoning or careful
system design.

2. Narrow Focus vs. General Insights (Very Popular)
Core idea: Examining whether focusing on Move Method refactoring constrains or sharpens insights.

3. Safety, Correctness, and Refactoring Hygiene (Popular)
Core idea: Concerns around correctness, anti-patterns, and reversibility of refactorings.

4. Metrics, Evaluation, and Recommendation Strategy (Popular)
Core idea: Evaluating the task as a recommendation problem and how we measure success.

Lessons Learned

LLMs are Prolific but with High rate of hallucinations:

- ExtractMethod: 73% rate of hallucinations —\/ ERIFY
- MoveMethod 80% hallucinations ant
- RonALD REAGHN

- PyCraft: 65% hallucinations

- Unit tests: 35% hallucinations

Do what LLM suggests, not what they do => need for powerful validators
Oremove hallucinations automatically reusing static analysis from the IDE (e.g., refactoring
precondition) Where else can we reuse the IDE as validator?
Onew static analysis

Odynamic analysis: generated small unit tests in PyCraft, used original code variant as validator
22

Lessons Learned

Prompt
Precise prompt for higher quality suggestions Engi nee ri ng —

Oappend line numbers for the code input
Oask LLM to give you precise response using line numbers
Oask LLM to specify the output in structured format (JSON): useful if the output is consumed by other

tools

Few-shot learning worked best for both EM-Assist and PyCraft
For MoveMethod-Assist: RAG needed to focus the LLM laser in large projects, along with Chain-of-
Thought

23

Lessons Learned:
Taming LLM nondeterminism

To get consistent high-quality suggestions, you need to reprompt (in the background),

accumulate results shown to the user

Re-prompting not a waste

Newly-designed ranking to match LLM workflow (e.g., popularity of suggestions, heat map of the

code affected by suggestions)

Sweet spot: tuning LLM hyperparameters (e.g., temperatures and number of iterations) is essential

* Higher randomness in Large Language Models is preferred when a solid validation framework exists

24

MANTRA DEMO

MANTRA: Enhancing Automated Method-Level Refactoring with
Contextual RAG and Multi-Agent LLM Collaboration

Yisen Xu Feng Lin Jinqiu Yang
SPEAR Lab, Concordia University SPEAR Lab, Concordia University O-RISA Lab, Concordia University
Montreal, Canada Montreal, Canada Montreal, Canada
yisen.xu@mail.concordia.ca feng.lin@mail.concordia.ca jinqiu.yang@concordia.ca

Tse-Hsun (Peter) Chen Nikolaos Tsantalis
SPEAR Lab, Concordia University Department of Computer Science and

Montreal, Canada Software Engineering, Concordia
peterc@encs.concordia.ca University
Montreal, Canada
nikolaos.tsantalis@concordia.ca

Your questions

Why does the reviewer agent contribute the most to the system’s performance?
How to use Mantra?
Why were these six refactorings chosen over other common refactorings?

Would MANTRA still work if refactorings were embedded in ongoing development rather than
Isolated "pure” commits?

Are compilation and test success sufficient proxies for refactoring correctness in all cases?
How often does the repair phase introduce changes that go beyond structural refactoring?

How dependent is MANTRA on high-quality test coverage?

Your discussion points

1> Trust, Hallucinations, and What “Correctness” Means
Whether MANTRA's safeguards are actually sufficient, and what we should accept as “correct” in
LLM-assisted refactoring.

2> Why the Reviewer Agent Matters So Much
The ablation result that the reviewer agent is central to MANTRA's success.

3> Cognitive Load, Developer Experience, and Human Trust
Whether agentic tools truly help developers—or just shift effort elsewhere.

Project Ideas

1> What new project ideas did you get from reading these 4 refactoring papers this week?

Potential new directions:

Extend CoRenameAgent to support new refactoring kinds (e.g., MoveMethod - close to 90% of
move methods are performed in a coordinated style, other common program changes)

Extend MoveMethod Assist to support new refactoring kinds (e.g., Split Class)

Extend MANTRA to support new refactoring kinds

Extend any of these tools to support other languages (e.g., Python), IDEs (VSCode), Language/IDE
independence (e.g., via LSP)

Expand RefactoringBench to include new, uncontaminated, real-world refactorings

Implement a refactoring Agent and evaluate it against the baseline implementation from
RefactorBench or MANTRA

Design a new agent that introduces Design Patterns (e.g., from the OOAD class, Gang of Four)

	Slide 1: Together We Are Better LLM, IDE and Semantic Embedding to Assist Move Method Refactoring
	Slide 2: Why MoveMethod Matters
	Slide 3: MoveMethod Refactoring to the Rescue
	Slide 4: Current Move Method Workflow in IntelliJ
	Slide 5: Approaches for MM Recommendations
	Slide 6: MoveMethod Refactoring Case Study
	Slide 7: Key Challenges in using LLMs
	Slide 8: Our Insights
	Slide 9: MM-Assist: Workflow
	Slide 10: Empirical Evaluation Setup
	Slide 11: Results: Synthetic Corpus
	Slide 12: Results: Real-World Corpus + User study
	Slide 13: MM-Assist Summary
	Slide 14: MoveMethod-Assist DEMO
	Slide 15: ExtractMethod-Assist DEMO
	Slide 16: Your questions
	Slide 17: Your Discussion Points
	Slide 18: Lessons Learned
	Slide 19: Lessons Learned
	Slide 20: Lessons Learned: Taming LLM nondeterminism
	Slide 21: MANTRA DEMO
	Slide 22: Your questions
	Slide 23: Your discussion points
	Slide 24: Project Ideas

