LLM-Based Agents for SE:
Key Ideas & Open Questions

Based on survey by Junwel Li et al. TOSEM'25
Research Roadmap by Ahmed Hassan et al. TOSEM

What do you most want to get out of today’s discussion?

@ The Slido app must be installed on every computer you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design

Today's goals

Reconstruct the conceptual map of LLM-based agents in SE
ldentify where agentic systems already work well vs. poorly
Spot gaps, blind spots, and weak assumptions in current research

Translate research opportunities - concrete project ideas

What Do the Authors Mean by “"Agent”?

- :
‘ :_—. User Requirements
)

l

LIL.M-controlled
Brain

Planning

Beyond single-prompt LLM usage

Environment :
Toolkit

What distinguishes an “agent” from a clever prompt or script?

Where is the boundary fuzzy in this paper?

Agent Taxonomy (Architectural View)

Single-agent vs multi-agent
Centralized vs decentralized control
Role-based agents

Tool-augmented agents
Which architectures feel overrepresented in the literature? Why?

Which architectures seem underexplored or impractical today?

Software Development Lifecycle
Coverage Map

Software Development and Maintenance

Agents for | Requirements Code Static : raut : Feature -
Individual Engineering Generation Verification || Checking Testing Localization Repair Maintenance Operations
(4) (43) (0) (14) (22) (2) (8) (0) (3)

SE Tasks Saction TV, A Section IV. B Section IV. C) | Section IV. D)\ Section IV. E Section IV. E Section IV. F

Agents for End-to-end Software Development End-to-end Software Maintenance
End-to-end (20) 9)

SE Tasks Section IV. G Section IV. H

Where agents are commonly applied
Where coverage is thin (?)

Deep Dive: Strong Coverage Areas

Code generation / repair
Test generation

Bug fixing

Program comprehension

What assumptions about software development are baked into these successes?
Do these agents help individuals, teams, or organizations?

SWE-Bench

Verified Lite Full Multimodal

Bash Only evaluates all LMs with a minimal agent on SWE-bench Verified (details)

LW Compare results

Filters: All Tags ¥

Model

@ Claude 4.5 Opus medium (20251101)

B Gemini 3 Pro Preview (2025-11-18)

M@ GPT-5.2 (2025-12-11) (high reasoning)
Claude 4.5 Sonnet (20250929)

B GPT-5.2 (2025-12-11)

Claude 4 Opus (20250514)

@ GPT-5.1-codex (medium reasoning)

B GPT-5.1 (2025-11-13) (medium reasoning)
GPT-5 (2025-08-07) (medium reasoning)
Claude 4 Sonnet (20250514)

M@ Kimi K2 Thinking

M@ Minimax M2

@ DeepSeek V3.2 Reasoner

GPT-5 mini (2025-08-07) (medium reasoning)

% Resolved

Avg. $

Trajs

&

&

&

&

&

C

C

K

C

C

C

C

C

C

Org

Date

2025-11-24

2025-11-18

2025-12-11

2025-09-29

2025-12-11

2025-08-02

2025-11-24

2025-11-20

2025-08-07

2025-07-26

2025-12-10

2025-11-24

2025-12-01

2025-08-07

Release

1.16.0

1.15.0

1.17.2

1.13.3

1.17.2

1.0.0

1.16.0

1.15.0

1.7.0

1.0.0

1.17.2

1.17.0

1.17.1

1.7.0

Weak or Missing Coverage Areas

Highlighted gaps:

Requirements engineering

Architectural decision-making
Socio-technical coordination

DevOps incident response

Long-term maintenance & technical debt

Pick one SDLC phase here. Why is it hard for agents today?

Is the blocker technical, organizational, or conceptual?

Which of these missing coverage areas trigger your imagination for building
an agent for?

@ The Slido app must be installed on every computer you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design

Evaluation: How Are Agents Being
Measured?

Benchmarks

Task success rates
Code-centric metrics
Synthetic tasks

What is missing from current evaluation approaches?
How would you evaluate an agent working on a 3-month project?

@ Long Code Arena

& Long Code Arena is a suite of benchmarks for code-related tasks with large contexts, up to a whole code repository. It currently spans six different tasks and contains six datasets:

o Q Library-based code generation
o @& Cl builds repair

o @8 Project-level code completion

o Q Commit message generation

o Q Bug localization

o Q Module summarization

Model Name A Mean Rank v Mean Score 4 Library-based CG Ao CI builds repair Ao CMG 4 Bug localization a4 Module summarization
Llama 3.1 (8B) 8.6 + 0.55 0.12 0.00 0.00 0.59 0.00 0.00
Llama 3.1 (70B) 7.0 £+ 1.00 0.29 0.27 0.21 0.77 0.17 0.02
Claude 3 Haiku 6.8 £ 1.30 0.42 0.50 0.08 0.52 0.49 0.52
Llama 3.1 (405B) 5.2 + 1.79 0.47 0.62 0.17 0.87 0.58 0.11
Gemini 1.5 Pro 3.6 £+ 2.07 0.58 0.82 0.42 0.87 0.71 0.09
GPT-40 2.8 £+ 1.10 0.70 0.73 0.42 0.87 0.80 0.69
DeepSeek R1 2.2 £ 1.10 0.80 0.64 0.96 0.88 0.84 0.66
Claude 3.5 Sonnet 1.6 = 0.55 0.84 0.91 1.00 0.87 0.78 0.62
GPT-o01 1.0 £+ 0.00 0.96 0.83 1.00 0.98 0.97 1.00

Human-Agent Interaction Assumptions

Many systems assume:
- Clear task boundaries
- Well-specified goals
- Minimal human negotiation

How realistic are these assumptions in real software teams?
What human behaviors are ignored?

Section 6: Research Opportunities

Scalability & robustness
Trust, safety, alignment
Long-horizon reasoning
Human-in-the-loop agents

Real-world deployment

Research Opportunities - Project Seeds

Which opportunity excites you most—and why?
What would a small but meaningful prototype look like?

What would you NOT try to solve in a semester?

High-Impact Project-Trigger Questions

® Humans in the Loop
Should agents adapt to individual developer styles?
How do we prevent "over-automation”?

® Evaluation
What would a qualitative benchmark for agents look like?
How do we measure trust or usefulness?

Evaluation & Benchmarks: What Does
“"Success” Mean for Agents?

@ s it possible to create a benchmark that evaluates both intermediate reasoning states and final
outcomes?

@® How can we standardize benchmarks so agents with different architectures are comparable?

@® How can we rigorously evaluate agents on long-running software projects, not isolated tasks?

@® \What is the right metric for success on real projects?

® Code quality?

® Deployment frequency?

@® Bug reduction?

@® Developer productivity?

@® How can evaluation frameworks capture long-term qualities like maintainability, architectural
soundness, or developer trust?

® How do we evaluate autonomy beyond task completion?

Architecture Tradeoffs: When Is
“Agentic” Actually Worth It?

@® \Why do simpler ML or prompt-based approaches sometimes outperform more sophisticated agentic
ones?

® \What performance and cost tradeoffs exist between:

@® Multi-agent systems

® Single agents with tool access

@® Under what conditions is multi-agent worth the overhead?

@® \Which software activities truly benefit from job separation across agents?

® To what extent do multi-agent systems outperform strong baselines once coordination overhead is
included?

@® \What are the tradeoffs between different memory designs (vectorized vs natural language)?

Memory, Context, and Long-Term
Stability

@® How stable are agent behaviors as memories grow over long periods?

® How should an agent decide when it has enough context to act, versus when more context adds
noise?

@® How is information being measured in these systems?

® Can ideas from information theory help with efficient context distillation?

@® \What are the tradeoffs between:

@ Storing information efficiently

@® Conveying it clearly for reasoning

@® How do we prevent context window saturation from degrading performance?

Autonomy, Human Control, and
Responsibility

@® \What responsibilities should remain human-driven in an agent-assisted SE pipeline?

@® How do we prevent compounding errors, especially in agents with reflection or self-improvement?
@® \What can agents do to prevent the reinforcement of wrong assumptions?

@ If an agent introduces a vulnerability:

® \Who is responsible?

® How does the system justify its actions?

@® \What is the right balance between agent autonomy and human oversight in long-running projects?
@® Could agents adapt to—or reshape—company-specific coding practices, and who decides?

Emergence, Roles, and the Future of
Software Engineers

@® To what extent are agent capabilities truly emergent, versus prompt-engineered?

@® How are agent roles created: Prompting? Rules? Fine-tuning? Tool feedback?

® How long will LLM capabilities continue improving rapidly—and what happens when they plateau?
® Will agentic systems fully replace software engineers, or are we seeing diminishing returns?

@ If base LLM improvements still dominate gains, what does that imply for agent research?

Agentic Software Engineering: Foundational
Pillars and a Research Roadmap

Ahmed Hassﬁah et al.

From Agentic Coding to Agentic
Software Engineering (SE 3.0)

Memory refresh

® SE 1.0: Manual coding

@® SE 2.0: Al-augmented coding (Copilot, autocomplete)

® SE 3.0: Goal-agentic systems executing multi-step SE tasks
@® Core tension: speed vs trust

Why do the authors argue that today’s tools are still “agentic coding,” not SE?
What breaks when we scale from one agent - many agents?

Agency vs Autonomy: A Critical
Distinction

Memory refresh

@® Agency: execute a given plan

® Autonomy: formulate the plan itself

® Analogy to SAE self-driving levels (Levels 0-5)
® Paper focuses on Level 3 (Goal-Agentic SE)

Why is Level-3 the "danger zone"” for software engineering?
What risks appear before full autonomy (Levels 4-5)?

The Central Claim: Duality of SE

Two simultaneous modalities:
® SE for Humans (SE4H) - humans as Agent Coaches
@ SE for Agents (SE4A) - predictable, structured agent environments

Same four pillars, different manifestations:
® Actors, Processes, Tools, Artifacts

What existing SE assumptions become invalid when agents are first-class actors?
Is this duality descriptive, or a prescription the authors are arguing for?

Why Today’s IDEs and Workflows Fall

IDEs optimized for human cognition

Chat-based prompting is:

® Ephemeral

® Non-auditable

@® Non-reproducible

@® Leads to review bottlenecks and "merge-unready” code

Which of your own workflows already show these cracks?
Could better models alone fix this—or is structure unavoidable?

Structured Agentic Software
Engineering (SASE)

SASE = structured human—-agent collaboration
Core idea: artifacts as the interface
Replace Informal prompts - version-controlled artifacts

® Goal: make agentic SE auditable, reproducible, and scalable

What feels most radical: the artifacts, or the human role shift?

Two New Workbenches: ACE & AEE

ACE (Agent Command Environment)
@® Human-optimized
@® Orchestration, review, mentorship

AEE (Agent Execution Environment)
® Agent-optimized
@ Parallelism, raw tools, monitoring

What would you want to see in an ACE that IDEs don't provide?
Why is it dangerous to optimize tools for humans and agents at once?

New Artifacts: Making Trust Explicit

Key SASE artifacts:

@ BriefingScript - intent + success criteria

® LoopScript — workflow & rigor

® MentorScript — norms & best practices

® Consultation Request Pack (CRP) — agent - human escalation
® Merge-Readiness Pack (MRP) - evidence-based deliverable

Which artifact feels most immediately useful?
Which feels hardest to design well—and why?

Engineering Activities, Not Just Tools

Six core activities:

1. Briefing Engineering (BriefingEng)

2. Agentic Loop Engineering (ALE)

3. Al Teammate Mentorship Engineering (ATME)
4. Agentic Guidance Engineering (AGE)

5. Al Teammate Lifecycle Engineering (ATLE)

6. Al Teammate Infrastructure Engineering (ATIE)

Which of these is closest to an existing SE discipline you know?
Which represents genuinely new research territory?

The Bitter Lesson (Revisited)

Sutton’s Bitter Lesson: scale > human-encoded knowledge
Authors’ position:

@ Structure # fighting scale

@ Structure enables reliable scaling in complex domains
Humans provide: Strategy, Ethics, Guardrails, Judgment

|Is SASE aligned with, or in tension with, the Bitter Lesson?
When should humans impose structure—and when should they step back?

Research & Education Implications
(Project Bridge)

@® From code = coordination, observability, memory, trust

Education shifts:
® From "writing code” - mentoring and orchestrating agents

The human becomes:
@® Conductor, not typist

Which SASE component would make the best class project?
If we trained students this way, what skills would we stop teaching?

Transparency, Observability, and Trust
In Agent Decisions

® \What level of observability is necessary for humans to trust, audit, and intervene in agent
decisions without causing cognitive overload?

® How should we trace and explain agent actions across multiple iterations, long-running
workflows, and N-to-N agent collaborations?

® Does increased structure (e.g., scripts, logs, artifacts) genuinely improve trust, or does it merely
create the appearance of rigor?

® How much transparency is "enough” before it starts degrading agent performance or human
usability?

Context, Memory, and Long-Term
Alighment

® \When does long-term memory meaningfully improve agent performance, and when does it
Introduce noise or misalignment?

® How should agents balance short-term efficiency vs. long-term alignment, and does this tradeoff
vary by task or domain?

® Are Briefing Packs better viewed as persistent memory or as retrieval targets activated
selectively?

® How should retrieval-based mechanisms (e.g., RAG) be designed, evaluated, and governed in
agentic workflows?

Human-Agent Responsibility, Oversight,
and Accountability

® \Who is legally and ethically responsible when autonomous agents introduce faults or regressions?

® How do we prevent automation complacency in human reviewers as agents become more
capable?

@® Can agents reliably decide when to escalate issues to humans—and how do we validate that
behavior?

® \Who authorizes and validates control artifacts like MentorScripts and LoopScripts?

Reproducibility, Versioning, and
Engineering Rigor

@® How can we guarantee reproducibility when LLM outputs are inherently stochastic?

@® \What is the right granularity of version control for agent-generated artifacts, reasoning traces,
and decisions?

® How do we benchmark “merge readiness” or correctness in a standardized, repeatable way?

® How do we ensure agents don't reinforce bad or outdated engineering norms over time?

Cost, Scalability, and Practical Adoption

® Can small teams, startups, and open-source projects realistically afford agentic infrastructure?

® \What is the cost overhead of maintaining SASE artifacts relative to existing workflows?

® \Vill agentic systems ever see widespread adoption given inference and orchestration costs?

® How does SASE affect real-world metrics like commit rates, review latency, and regression
frequency?

Human Roles, Skills, and Team Dynamics

® How does the role of developers change when humans act primarily as specifiers rather than
Implementers?

® How do we preserve creativity and solution diversity when agents optimize toward “optimal”
outputs?

® How should senior engineers be trained when agents take on entry-level tasks?

® \Will agentic SE change who enters the field, and could it broaden participation?

	Slide 1: LLM-Based Agents for SE: Key Ideas & Open Questions
	Slide 2
	Slide 3: Today’s goals
	Slide 4: What Do the Authors Mean by “Agent”?
	Slide 5: Agent Taxonomy (Architectural View)
	Slide 6: Software Development Lifecycle Coverage Map
	Slide 7: Deep Dive: Strong Coverage Areas
	Slide 8: SWE-Bench
	Slide 9: Weak or Missing Coverage Areas
	Slide 10
	Slide 11: Evaluation: How Are Agents Being Measured?
	Slide 12
	Slide 13: Human–Agent Interaction Assumptions
	Slide 14: Section 6: Research Opportunities
	Slide 15: Research Opportunities → Project Seeds
	Slide 16: High-Impact Project-Trigger Questions
	Slide 17: Evaluation & Benchmarks: What Does “Success” Mean for Agents?
	Slide 18: Architecture Tradeoffs: When Is “Agentic” Actually Worth It?
	Slide 19: Memory, Context, and Long-Term Stability
	Slide 20: Autonomy, Human Control, and Responsibility
	Slide 21: Emergence, Roles, and the Future of Software Engineers
	Slide 22: Agentic Software Engineering: Foundational Pillars and a Research Roadmap
	Slide 23: From Agentic Coding to Agentic Software Engineering (SE 3.0)
	Slide 24: Agency vs Autonomy: A Critical Distinction
	Slide 25: The Central Claim: Duality of SE
	Slide 26: Why Today’s IDEs and Workflows Fail
	Slide 27: Structured Agentic Software Engineering (SASE)
	Slide 28: Two New Workbenches: ACE & AEE
	Slide 29: New Artifacts: Making Trust Explicit
	Slide 30: Engineering Activities, Not Just Tools
	Slide 31: The Bitter Lesson (Revisited)
	Slide 32: Research & Education Implications (Project Bridge)
	Slide 33: Transparency, Observability, and Trust in Agent Decisions
	Slide 34: Context, Memory, and Long-Term Alignment
	Slide 35: Human–Agent Responsibility, Oversight, and Accountability
	Slide 36: Reproducibility, Versioning, and Engineering Rigor
	Slide 37: Cost, Scalability, and Practical Adoption
	Slide 38: Human Roles, Skills, and Team Dynamics

